... newer stories
50 Tage
wuerg, 16.05.2005 00:33
Pfingsten liegt 50 Tage nach Ostern, Himmelfahrt 40 danach und Palmsonntag 8 Tage davor. Nach dieser römischen Zählweise läge Himmelfahrt 11 Tage vor Pfingsten, zwei Wochen müßten auch bei uns quinze jours heißen und morgen wäre in zwei Tagen. Die gerechte Strafe sind Verwirrungen, wenn man wirklich einmal acht Tage meint. Dann muß man morgen in einer Woche sagen. Dem guten Muttersprachler bereitet das wenig Probleme, weil er nicht denken, rechnen und übersetzen muß, wenn er schwankende Systeme verwendet. Das alles machen wir aber nicht nur zur Verwirrung der Ausländer, sondern auch zum Erhalt vererbten bürgerlichen Sprachvorteiles.
Jahr 0 | Oktave
Jahr 0 | Oktave
... link (0 Kommentare) ... comment
Freitag, der 13.
wuerg, 13.05.2005 15:23
Die Bedeutung der Zahl 12 ist unbestritten, manchen ist sie sogar heilig, wodurch sie zum Problem für die 13 wird. Sie kann als Überhöhung der 12 gesehen werden, aber auch als eins zuviel. Wurde Matthias für Judas als zwölfter oder ergänzend als dreizehnter Apostel nachgewählt? Oder hat Paulus sich selbst dazu ernannt? Ebenfalls unklar ist die Rolle des Freitag. Er steht am Beginn des Wochenendes, aber auch am Ende einer Arbeitswoche. Man kann am Freitag mit den Hochzeitsfeierlichkeiten beginnen oder schnell noch Jesus kreuzigen. Die Kombination von beiden, dem Freitag und der 13, scheint eine gewisse Faszination auszuüben, die sich in den letzten Jahrhunderten breit machte. Sicherlich steckt darin auch ein gewisser Trotz gegenüber römischer und christlicher Bevorzugung der 12, daß es nicht verwundert, wenn Sektierer und Anhänger Luzifers die 13 lieben.
Da kommt es nur gelegen, daß 13 amerikanische Staaten ihre Unabhängigkeit erklärten. In vielen Kartenspielen nutzt man vier Farben zu je 13 Karten. Die 13. Tarot‐Karte ist der Tod. Der berühmte Freitag‐der‐13te‐Virus fiel nicht auf den 13. Oktober 1989, sondern wurde auf ihn gelegt. Der Börseneinbruch am Freitag, den 13. Mai 1927 kam gerade recht, um die Legende vom schwarzen Freitag zu verstärken. So wurde auch der Beginn der Weltwirtschaftskrise auf einen Freitag, wenn auch nur den 25. Oktober 1929 gelegt. Man hat sich auf Freitag und insbesondere den 13. als Unglückstag geeinigt.
Zwar scheint die Triskaidekaphobie, die Angst vor der Zahl 13 verbreitet und der Aberglaube wieder auf dem Vormarsch zu sein, doch ist es nicht mehr gefährlich, sondern sogar beliebt, sich über ihn lustig zu machen, das böse Omen zu ignorieren oder gar herauszufordern. Und wenn es darum geht, ordentlich zu saufen und abzutanzen, dann ist ein Freitag, der 13. so recht wie jeder andere Anlaß. So kommt es eines Tages vielleicht dazu, einen Freitag, den 13. wieder neutral zu sehen, auch nicht umgekehrt als Glückstag, nur weil die erste gezogene Lottozahl eine 13 und damals Freitag noch Zahltag war. Doch wer ist heute noch Wochenlohnempfänger?
13 | 688
Da kommt es nur gelegen, daß 13 amerikanische Staaten ihre Unabhängigkeit erklärten. In vielen Kartenspielen nutzt man vier Farben zu je 13 Karten. Die 13. Tarot‐Karte ist der Tod. Der berühmte Freitag‐der‐13te‐Virus fiel nicht auf den 13. Oktober 1989, sondern wurde auf ihn gelegt. Der Börseneinbruch am Freitag, den 13. Mai 1927 kam gerade recht, um die Legende vom schwarzen Freitag zu verstärken. So wurde auch der Beginn der Weltwirtschaftskrise auf einen Freitag, wenn auch nur den 25. Oktober 1929 gelegt. Man hat sich auf Freitag und insbesondere den 13. als Unglückstag geeinigt.
Zwar scheint die Triskaidekaphobie, die Angst vor der Zahl 13 verbreitet und der Aberglaube wieder auf dem Vormarsch zu sein, doch ist es nicht mehr gefährlich, sondern sogar beliebt, sich über ihn lustig zu machen, das böse Omen zu ignorieren oder gar herauszufordern. Und wenn es darum geht, ordentlich zu saufen und abzutanzen, dann ist ein Freitag, der 13. so recht wie jeder andere Anlaß. So kommt es eines Tages vielleicht dazu, einen Freitag, den 13. wieder neutral zu sehen, auch nicht umgekehrt als Glückstag, nur weil die erste gezogene Lottozahl eine 13 und damals Freitag noch Zahltag war. Doch wer ist heute noch Wochenlohnempfänger?
13 | 688
... link (24 Kommentare) ... comment
Seventwenty
wuerg, 12.05.2005 13:56
Wenn man Eurosport einschaltet, um interessante Sportarten wie Curling oder Snooker zu sehen, dann bleibt es nicht aus, daß gerade einer beim Seventwenty mit dem Fahrrad auf die Schnauze fällt. Früher wäre das einfach eine Zweifachdrehung gewesen, wie die Turmspringer wohl immer noch anderthalbfache Saltos statt Fivefortier und dreifache Schrauben statt Teneightier vollführen, und zwar gleichzeitig. Gibt es eigentlich schon BMX‑Springen vom Zehnmeterbrett?
Natürlich mißfällt mir der Niedergang der deutschen Sprache, auch die in zu großen Zahlen steckende Gigantomanie, und gewiß bin ich kein Freund blödsinniger Verkürzungen, die Unwissende ausschließen sollen und geradezu fremden- und sogar ausländerfeindlich sind, seien sie dem Amtsschimmel oder Teenies entsprungen. Aber Seventwenty und Konsorten gefallen mir in zweierlei Hinsicht: Zum einen machen sie deutlich, daß Neugrade sich nicht durchsetzen werden. Zum anderen macht spätestens der Teneighty (1080) deutlich, daß man Zahlen in Zweierblöcke gliedern sollte.
Altgrad | Myriade
Natürlich mißfällt mir der Niedergang der deutschen Sprache, auch die in zu großen Zahlen steckende Gigantomanie, und gewiß bin ich kein Freund blödsinniger Verkürzungen, die Unwissende ausschließen sollen und geradezu fremden- und sogar ausländerfeindlich sind, seien sie dem Amtsschimmel oder Teenies entsprungen. Aber Seventwenty und Konsorten gefallen mir in zweierlei Hinsicht: Zum einen machen sie deutlich, daß Neugrade sich nicht durchsetzen werden. Zum anderen macht spätestens der Teneighty (1080) deutlich, daß man Zahlen in Zweierblöcke gliedern sollte.
Altgrad | Myriade
... link (0 Kommentare) ... comment
Altgrad
wuerg, 10.05.2005 17:59
Üblicherweise teilen wir den Kreisbogen in 360 Grad. Genauer gesagt in Altgrad. Von den Bemühungen um 400 Neugrad habe ich seit langem nichts mehr gehört. Meine Tafel der Logarithmen der trigonometrischen Funktionen nach neuer Teilung hat auch deshalb und nicht nur wegen der Taschenrechner und Computer reinen Erinnerungswert. Eine dritte Möglichkeit ist, auf eine Gradeinteilung zu verzichten und den Winkel einfach durch das Bogenmaß, die Länge des Einheitskreisbogens zu messen. Darüber hinaus gibt es noch den Vollwinkel und zahlreiche geschichtliche, militärische und nautische Einheiten.
Obwohl es nur einer Multiplikation bedarf, um die verschiedenen Winkelangaben umzurechnen, ist dies doch so wenig geläufig, daß Taschenrechner über Einstellungen für die verschiedenen Darstellungen verfügen. Meiner erlaut in einem verborgenen Menu die Umschaltung zwischen Deg, Gra und Rad. Man muß deshalb aufpassen, wenn man mit den Ergebnissen weiterrechnet. Ist zum Beispiel sin(x)/x zu berechnen, dann erhält man den Wert für 30° sicherlich nicht dadurch, daß man im Altgrad-Modus sin(30) berechnet und dann durch 30 teilt.
Nicht nur bei Taschenrechnern begeht man gerne den menschlichen Fehler, die angezeigten Zeichenketten falsch zu interpretieren, weil Zehnerpotenzen oder andere Umrechnungsfaktoren nicht beachtet werden. Die gespeicherten Konstanten und die vielfältige Tastenbelegung begünstigen solche Verwechselungen. Dabei ist es eigentlich ganz einfach: Wie 3 Millionen 3·1.000.000=3.000.000 ist, anderthalb Kibibyte 1,5·1024·8=12288 Bit meint, und 0,8 Promille für 0,8/1000=0,0008 steht, so entspricht 30 Altgrad einem Winkel der Größe (π/180)·30≈0,5236.
Manche spendieren dieser simplen Umrechnung von Altgrad in das Bogenmaß eine eigene Funktion namens Arcus, abgekürzt arc, definiert durch arc(x)=x·π/180. Eine Funktion für eine einfache Multiplikation, was soll das? Wer es duchschaut, schreibt zum Spaß arc(x)=x°, keinen Blödsinn wie arc α oder gar arcα und erst recht nicht arc(30°)=π/6. Vor allem Sportlehrer mit Nebenfach Mathematik scheinen bei α[°]=α·180/π einen Orgasmus zu bekommen. Ein zweiter mit arcα=(α°/360)·2π geht in die Hose, weil α einen Winkel vortäuscht, aber einfach eine Zahl ist und es 360° statt 360 heißen müßte.
Auf Taschenrechnern soll es gelegentlich Tasten ARC und auch MULπ geben, die einen Winkel in der ausgewählten Darstellung in das Bogenmaß bzw. Vielfache von π umrechnen. Wie Funktionen sinpi(x)=sin(πx) ersparen sie dem Kundigen Zeit, sind aber nichts für Leute ohne Durchblick, was aber nicht daran hindert, diesen Kram besonders an Berufs- und Fachschulen zu unterrichten. Besser wäre meines Erachtens Schnell-, Kopf- und Überschlagsrechnen, schriftliches Wurzelziehen, Nutzung von Tabellen samt Interpolation sowie die Handhabung eines Rechenschiebers, auch wenn man heute alles nicht mehr zu benötigen scheint. Wahrscheinlich muß ein Hochseekapitän auch nicht mehr segeln können.
Während man Neugrade und die meisten anderen Winkelmaße centesimal unterteilt, ist es bei Altgraden üblich, sie in 60 Minuten (′, arcmin, Bogen- oder Winkelminute) und die Minute in 60 Sekunden (″, arcsec, Bogen- oder Winkelsekunde) zu teilen. Eine weitere Unterteilung in 60 Tertien ist nicht mehr üblich. Stattdessen werden den Sekunden dezimale Nachkommastellen angefügt. Man kann aber auch auf Minuten und Sekunden verzichten und nur Nachkommastellen benutzen. So hat das regelmäßie Siebeneck einen Zentralwinkel von 2π/7≈128°34′17,142857″≈128,571428°. Sehr kleine Winkel werden auch gerne in tausendstel Bogensekunden (mas, milliarcsecond) angegeben. Mit zunehmender astronomischer Genauigkeit sind auch millionstel Bogensekunden (μas, microarcsecond) üblich.
Logarithmentafel | Rechenschieber
1 pla = 360 deg = 400 gon = 2π rad 1 τ = 360° = 400ᵍ = 2πDer Vollwinkel (plenus angelus, turn, revolution, cycle, Umdrehung) kommt im Leben eines normalem Menschen allenfalls beim Salto oder als Umdrehungen pro Minute vor. Die Abkürzung τ wurde zum Liebling der Pi‑Gegner, die 2π gerne durch τ ersetzen möchten. Das ist ja nicht falsch, nur ungewöhnlich. Zumindest in theoretischen Ausführungen harter Wissenschaften hält man sich an die dimensionslose SI‑Einheit mit 2π für den Vollwinkel. Also rad=1 und in der Folge pla=2π, deg=π/180 und gon=π/200. Alle keine echten Maßeinheiten, sondern schlichte Zahlen. Im überwiegenden Teil der Welt, insbesondere im Alltag sind jedoch die 360 Altgrade üblich und werden es auch bleiben.
Obwohl es nur einer Multiplikation bedarf, um die verschiedenen Winkelangaben umzurechnen, ist dies doch so wenig geläufig, daß Taschenrechner über Einstellungen für die verschiedenen Darstellungen verfügen. Meiner erlaut in einem verborgenen Menu die Umschaltung zwischen Deg, Gra und Rad. Man muß deshalb aufpassen, wenn man mit den Ergebnissen weiterrechnet. Ist zum Beispiel sin(x)/x zu berechnen, dann erhält man den Wert für 30° sicherlich nicht dadurch, daß man im Altgrad-Modus sin(30) berechnet und dann durch 30 teilt.
Nicht nur bei Taschenrechnern begeht man gerne den menschlichen Fehler, die angezeigten Zeichenketten falsch zu interpretieren, weil Zehnerpotenzen oder andere Umrechnungsfaktoren nicht beachtet werden. Die gespeicherten Konstanten und die vielfältige Tastenbelegung begünstigen solche Verwechselungen. Dabei ist es eigentlich ganz einfach: Wie 3 Millionen 3·1.000.000=3.000.000 ist, anderthalb Kibibyte 1,5·1024·8=12288 Bit meint, und 0,8 Promille für 0,8/1000=0,0008 steht, so entspricht 30 Altgrad einem Winkel der Größe (π/180)·30≈0,5236.
Manche spendieren dieser simplen Umrechnung von Altgrad in das Bogenmaß eine eigene Funktion namens Arcus, abgekürzt arc, definiert durch arc(x)=x·π/180. Eine Funktion für eine einfache Multiplikation, was soll das? Wer es duchschaut, schreibt zum Spaß arc(x)=x°, keinen Blödsinn wie arc α oder gar arcα und erst recht nicht arc(30°)=π/6. Vor allem Sportlehrer mit Nebenfach Mathematik scheinen bei α[°]=α·180/π einen Orgasmus zu bekommen. Ein zweiter mit arcα=(α°/360)·2π geht in die Hose, weil α einen Winkel vortäuscht, aber einfach eine Zahl ist und es 360° statt 360 heißen müßte.
Auf Taschenrechnern soll es gelegentlich Tasten ARC und auch MULπ geben, die einen Winkel in der ausgewählten Darstellung in das Bogenmaß bzw. Vielfache von π umrechnen. Wie Funktionen sinpi(x)=sin(πx) ersparen sie dem Kundigen Zeit, sind aber nichts für Leute ohne Durchblick, was aber nicht daran hindert, diesen Kram besonders an Berufs- und Fachschulen zu unterrichten. Besser wäre meines Erachtens Schnell-, Kopf- und Überschlagsrechnen, schriftliches Wurzelziehen, Nutzung von Tabellen samt Interpolation sowie die Handhabung eines Rechenschiebers, auch wenn man heute alles nicht mehr zu benötigen scheint. Wahrscheinlich muß ein Hochseekapitän auch nicht mehr segeln können.
Während man Neugrade und die meisten anderen Winkelmaße centesimal unterteilt, ist es bei Altgraden üblich, sie in 60 Minuten (′, arcmin, Bogen- oder Winkelminute) und die Minute in 60 Sekunden (″, arcsec, Bogen- oder Winkelsekunde) zu teilen. Eine weitere Unterteilung in 60 Tertien ist nicht mehr üblich. Stattdessen werden den Sekunden dezimale Nachkommastellen angefügt. Man kann aber auch auf Minuten und Sekunden verzichten und nur Nachkommastellen benutzen. So hat das regelmäßie Siebeneck einen Zentralwinkel von 2π/7≈128°34′17,142857″≈128,571428°. Sehr kleine Winkel werden auch gerne in tausendstel Bogensekunden (mas, milliarcsecond) angegeben. Mit zunehmender astronomischer Genauigkeit sind auch millionstel Bogensekunden (μas, microarcsecond) üblich.
Logarithmentafel | Rechenschieber
... link (10 Kommentare) ... comment
120
wuerg, 10.05.2005 01:23
Eine Zahl heißt k‑fach vollkommen, wenn ihre Teilersumme genau k mal so groß ist wie sie selbst. Die einzige einfach vollkommene Zahl ist die 1. Die zweifach vollkommenen Zahlen wie 6, 28 und 496 heißen schlicht vollkommen. Die kleinste dreifach vollkommene ist 120, denn
1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120 = 360 = 3·120
und es gibt keine kleineren. [1] Man kann den Ergebnissen anderer vertrauen oder zum Beweis alle Zahlen bis 119 durchprobieren. Nicht unbedingt schneller, doch lehrreicher geht es wie folgt: Der Faktor k(n)=σ(n)/n mit dem die Teilersumme σ(n) die Zahl n übersteigt ist multiplikativ. [2] Deshalb reicht es, seine Werte für die Primzahpotenzen zu kennen:
k(pm) = (1+p+p2+…+pm)/pm = ((pm+1−1)/(p−1))/pm < p/(p−1)
Sie bleiben unter einer oberen Schranke von p/(p−1). Die beiden größten zu p=2,3 multiplizieren sich zu (2/1)·(3/2)=3, weshalb k=3 nicht mit zwei Primzahlpotenzen allein möglich ist. Somit kommen in einer Zahl n<120 mit k(n)=3 wegen 119/(3·5)<8 nur 2 und 4 als Zweierpotenzen infrage, wegen 119/(2·5)<12 auch nur die Dreierpotenzen 3 und 9. Und da 119/(2·3)<20, sind größere Primzahlen allenfalls unpotenziert möglich, ab 23 scheiden sie gänzlich aus. Das führt auf eine übersichtliche Palette möglicher Primpotenzteiler:
So einfach geht es jedoch nicht weiter, auch wenn man in analoger Weise mit etwas mehr Geduld den Bereich bis 1000 ausschöpfen kann und noch 672 findet. Insgesamt sind nur sechs dreifach vollkommene Zahlen bekannt. Weitere gibt es wohl nicht.
Natürlich ist 120 als dreifach vollkommene Zahl ein Teilerprotz [3] und erwartungsgemäß auch eine superabundant und sogar colossally abundant number. Zudem ist sie largely, highly und sogar superior highly composite. Sie ist auch eine praktische Zahl, weil bis zur Teilersumme sich jede Zahl als Summe ausgewählter Teiler darstellen läßt. [4] Alles nicht verwunderlich für die fünfte Fakultät 120=5!=1·2·3·4·5.
Natürlich kommt die 120 auch in der Bibel vor. So soll Moses mit 120 Jahren gestorben sein. Und zur Ausgießung des Heiligen Geistes seien irgendwann einmal etwa 120 versammelt gewesen. Das ist zu mager für fromme Zahlakrobaten. Doch glücklicherweise gibt es neben 3·40 noch die 12 und die 10, aus denen man 120, 600, 42360, 144000, 600000 und andere mehr zaubern kann.
[1] The On-Line Encyclopedia of Integer Sequences. Teilersummen A000203 und dreifach vollkommene Zahlen A005820.
[2] Eine zahlentheoretische Funktion f heißt multiplikativ, wenn f(ab)=f(a)f(b) für teilerfremde a und b gilt.
[3] Zahlen n mit einer Teilersumme σ(n)=2n heißen (zweifach) vollkommen, darunter defizient, darüber abundant. Wenigstens für letztere gibt es auch die schöne deutsche Bezeichnung Teilerprotz.
[4] The On-Line Ecyclopedia of Integer Sequences. Abundant A005101, superabundant (SA) A00439, colossally abundant (CA) A004490 numbers. Largely composite numbers A067128, highly composite numbers (HCN), stark zusammengesetzte Zahlen A002182, superior highly composite (SHCN) numbers A002201, practical numbers, praktische Zahlen A002201.
28
1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120 = 360 = 3·120
und es gibt keine kleineren. [1] Man kann den Ergebnissen anderer vertrauen oder zum Beweis alle Zahlen bis 119 durchprobieren. Nicht unbedingt schneller, doch lehrreicher geht es wie folgt: Der Faktor k(n)=σ(n)/n mit dem die Teilersumme σ(n) die Zahl n übersteigt ist multiplikativ. [2] Deshalb reicht es, seine Werte für die Primzahpotenzen zu kennen:
k(pm) = (1+p+p2+…+pm)/pm = ((pm+1−1)/(p−1))/pm < p/(p−1)
Sie bleiben unter einer oberen Schranke von p/(p−1). Die beiden größten zu p=2,3 multiplizieren sich zu (2/1)·(3/2)=3, weshalb k=3 nicht mit zwei Primzahlpotenzen allein möglich ist. Somit kommen in einer Zahl n<120 mit k(n)=3 wegen 119/(3·5)<8 nur 2 und 4 als Zweierpotenzen infrage, wegen 119/(2·5)<12 auch nur die Dreierpotenzen 3 und 9. Und da 119/(2·3)<20, sind größere Primzahlen allenfalls unpotenziert möglich, ab 23 scheiden sie gänzlich aus. Das führt auf eine übersichtliche Palette möglicher Primpotenzteiler:
p m pm σ(pm) k(pm) 2 1 2 3 3/2 2 2 4 7 7/2·2 3 1 3 4 2·2/3 3 2 9 13 13/3·3 5 1 5 6 2·3/5 7 1 7 8 2·2·2/7 11 1 11 12 2·2·3/11 13 1 13 14 2·7/13 17 1 17 18 2·3·3/17 19 1 19 20 2·2·5/19In den Brüchen für k(pm) tauchen die Primfaktoren 11, 17 und 19 nur in Nennern auf. Sie können deshalb nicht zu einem Produkt k(n)=3 einer Zahl n<120 beitragen, und scheiden deshalb aus. Es bleiben:
p m pm σ(pm) k(pm) 2 1 2 3 3/2 2 2 4 7 7/2·2k 3 1 3 4 2·2/3 3 2 9 13 13/3·3 5 1 5 6 2·3/5 7 1 7 8 2·2·2/7 13 1 13 14 2·7/13Aus dem gleichen Grund entfällt nun auch die 5. Zudem kommt die 13 nur im Nenner zu sich selbst und im Zähler zur 9 vor. Beide können also nur gemeinsam auftreten und gestatten wegen 9·13>119/2 keinen weiteren Primfaktor:
p m pm σ(pm) k(pm) 2 1 2 3 3/2 2 2 4 7 7/2·2 3 1 3 4 2·2/3 7 1 7 8 2·2·2/7Damit ist maximal k(4·3·7)=k(4)·k(3)·k(7)=(7/4)·(4/3)·(8/7)=8/3<3 zu erzielen. Somit gibt es keine dreifach vollkommene Zahl unter 120.
So einfach geht es jedoch nicht weiter, auch wenn man in analoger Weise mit etwas mehr Geduld den Bereich bis 1000 ausschöpfen kann und noch 672 findet. Insgesamt sind nur sechs dreifach vollkommene Zahlen bekannt. Weitere gibt es wohl nicht.
Natürlich ist 120 als dreifach vollkommene Zahl ein Teilerprotz [3] und erwartungsgemäß auch eine superabundant und sogar colossally abundant number. Zudem ist sie largely, highly und sogar superior highly composite. Sie ist auch eine praktische Zahl, weil bis zur Teilersumme sich jede Zahl als Summe ausgewählter Teiler darstellen läßt. [4] Alles nicht verwunderlich für die fünfte Fakultät 120=5!=1·2·3·4·5.
Natürlich kommt die 120 auch in der Bibel vor. So soll Moses mit 120 Jahren gestorben sein. Und zur Ausgießung des Heiligen Geistes seien irgendwann einmal etwa 120 versammelt gewesen. Das ist zu mager für fromme Zahlakrobaten. Doch glücklicherweise gibt es neben 3·40 noch die 12 und die 10, aus denen man 120, 600, 42360, 144000, 600000 und andere mehr zaubern kann.
[1] The On-Line Encyclopedia of Integer Sequences. Teilersummen A000203 und dreifach vollkommene Zahlen A005820.
[2] Eine zahlentheoretische Funktion f heißt multiplikativ, wenn f(ab)=f(a)f(b) für teilerfremde a und b gilt.
[3] Zahlen n mit einer Teilersumme σ(n)=2n heißen (zweifach) vollkommen, darunter defizient, darüber abundant. Wenigstens für letztere gibt es auch die schöne deutsche Bezeichnung Teilerprotz.
[4] The On-Line Ecyclopedia of Integer Sequences. Abundant A005101, superabundant (SA) A00439, colossally abundant (CA) A004490 numbers. Largely composite numbers A067128, highly composite numbers (HCN), stark zusammengesetzte Zahlen A002182, superior highly composite (SHCN) numbers A002201, practical numbers, praktische Zahlen A002201.
28
... link (1 Kommentar) ... comment
60 Jahre
wuerg, 08.05.2005 18:04
Am 8. Mai 1945 wurde die Gesamtkapitulation unterzeichnet. Das ist nun 60 Jahre her. Für die Babylonier wären diese 60 Jahre ein „Jahrhundert“ ohne Krieg gewesen, wenn man den Blick nur auf unser Heimatland richtet. Für die ganze Welt soll das letzte kriegsfreie Jahr 1776 gewesen sein.
Die Babylonier haben zur Basis 60 gerechnet. Noch heute sehen wir das in den 60 Sekunden einer Minute und den 60 Minuten einer Stunde. Der Kreis wird in 360 Grad geteilt, die sich in 60 Minuten und diese wieder in 60 Sekunden teilen. Die „neue Teilung“ in 400 Neugrad zu 100 Neuminuten [1] hat sich nicht durchgesetzt, auch nicht die Industrieminute zu 36 Sekunden. Die 60 paßt zur Basis 10, in der man auch im Altertum schon rechnete, aber auch auf die damals ebenso beliebte 12, die Zahl der Monate im Jahr. Und so fügt es sich gut, daß ein Jahr mit seinen 365 Tagen mit 6 mal 60 passabel genähert ist. Rechnen Geldinstitute eigentlich auch im Computerzeitalter noch immer mit 360 Zinstagen?
Die Babylonier waren den Griechen im Rechnen ganz klar überlegen. Indem sie die 60=2·2·3·5 wählten, konnten sie ohne Schwierigkeiten durch 2, 3, 4, 5 und 6 teilen. Durch ihre für die damalige Zeit einigermaßen vernünftige Zahldarstellung, konnten sie deutlich besser rechnen. Die griechische Methode, für Zahlen von 1 bis 999 die 27=3·9 Buchstaben des erweiterten Alphabetes zu nutzen, war äußerst ungeschickt. Wenn sie sich vom Bildermalen erhoben, nicht nur zählten, sondern auch rechneten, dann übersetzten sie erst ins babylonische System und hinterher wieder zurück. Das lag nicht nur an der Zahl 60, sondern auch an den Reziprokentafeln der Babylonier, mit denen man die Division leicht erschlagen konnte.
Die Zahl 60 hat ausgesprochen viele Teiler, nämlich 12. Keine kleinere Zahl hat soviele. Deshalb heißt 60 auch stark zusammengesetzte Zahl. Es gibt dennoch kleinere stark zusammengesetzte Zahlen: 4, 6, 12, 24, 36 und 48 mit 3, 4, 6, 8, 9 bzw. 10 Teilern. [2] Die 1 mit einem Teiler und die 2 mit zweien habe ich ausgelassen, gleichwohl Mathematiker sich nicht daran stoßen, daß diese beiden zwar nicht zusammengesetzt sind, aber dennoch als stark zusammengesetzt gelten. Die Teilersumme der 60 liegt mit 168 um den Faktor 2,8 über der Zahl 60 selbst. Damit ist sie ein deutlicher Teilerprotz, doch 3-vollkommen (Faktor 3) ist erst die 120.
[1] deg=π/180=1°=60'=3600", gon=π/200=1g=100c=10000cc
[2] The On-Line Encyclopedia of Integer Sequences. Stark zusammengesetze Zahlen A002182 und ihre Teileranzahlen A002183
120 | Altgrad
Die Babylonier haben zur Basis 60 gerechnet. Noch heute sehen wir das in den 60 Sekunden einer Minute und den 60 Minuten einer Stunde. Der Kreis wird in 360 Grad geteilt, die sich in 60 Minuten und diese wieder in 60 Sekunden teilen. Die „neue Teilung“ in 400 Neugrad zu 100 Neuminuten [1] hat sich nicht durchgesetzt, auch nicht die Industrieminute zu 36 Sekunden. Die 60 paßt zur Basis 10, in der man auch im Altertum schon rechnete, aber auch auf die damals ebenso beliebte 12, die Zahl der Monate im Jahr. Und so fügt es sich gut, daß ein Jahr mit seinen 365 Tagen mit 6 mal 60 passabel genähert ist. Rechnen Geldinstitute eigentlich auch im Computerzeitalter noch immer mit 360 Zinstagen?
Die Babylonier waren den Griechen im Rechnen ganz klar überlegen. Indem sie die 60=2·2·3·5 wählten, konnten sie ohne Schwierigkeiten durch 2, 3, 4, 5 und 6 teilen. Durch ihre für die damalige Zeit einigermaßen vernünftige Zahldarstellung, konnten sie deutlich besser rechnen. Die griechische Methode, für Zahlen von 1 bis 999 die 27=3·9 Buchstaben des erweiterten Alphabetes zu nutzen, war äußerst ungeschickt. Wenn sie sich vom Bildermalen erhoben, nicht nur zählten, sondern auch rechneten, dann übersetzten sie erst ins babylonische System und hinterher wieder zurück. Das lag nicht nur an der Zahl 60, sondern auch an den Reziprokentafeln der Babylonier, mit denen man die Division leicht erschlagen konnte.
Die Zahl 60 hat ausgesprochen viele Teiler, nämlich 12. Keine kleinere Zahl hat soviele. Deshalb heißt 60 auch stark zusammengesetzte Zahl. Es gibt dennoch kleinere stark zusammengesetzte Zahlen: 4, 6, 12, 24, 36 und 48 mit 3, 4, 6, 8, 9 bzw. 10 Teilern. [2] Die 1 mit einem Teiler und die 2 mit zweien habe ich ausgelassen, gleichwohl Mathematiker sich nicht daran stoßen, daß diese beiden zwar nicht zusammengesetzt sind, aber dennoch als stark zusammengesetzt gelten. Die Teilersumme der 60 liegt mit 168 um den Faktor 2,8 über der Zahl 60 selbst. Damit ist sie ein deutlicher Teilerprotz, doch 3-vollkommen (Faktor 3) ist erst die 120.
[1] deg=π/180=1°=60'=3600", gon=π/200=1g=100c=10000cc
[2] The On-Line Encyclopedia of Integer Sequences. Stark zusammengesetze Zahlen A002182 und ihre Teileranzahlen A002183
120 | Altgrad
... link (4 Kommentare) ... comment
Rene Ammann
wuerg, 08.05.2005 00:47
Ich gehöre nicht zu denen, die bei Hugeldubel tagelang sitzen, ein Buch lesen und es dann zurücklegen. Ich mache es leider umgekehrt und kaufe in wenigen Minuten fünf Stück. Das dritte im Bunde ist „Ammanns wunderbare Welt in Zahlen“ von Rene Ammann. Es handelt sich um eine Ansammlung von Fragen, die mit Zahlen beantwortet werden, mehr oder minder alle aus dem täglichen Leben und für meinen Blog ungeeignet, da es sich zumeist um Geldmengen, gerundete Zahlen, Prozente oder Verhältnisse handelt. Oftmals besteht der Witz auch in der Gegenüberstellung. Zwei Beispiele wird mir der Autor erlauben: Viele meinen, Frauen würden nach dem Aussehen behandelt. Das stimmt, denn gut aussehende Britinnen verdienen 11% mehr als die schlecht aussehenden. Doch bei Männern sind es 15%! Anteil der Amerikaner, die meinen, zumindest bald zum obersten Prozent der Einkommensverteilung zu gehören: 42 Prozent!
... link (0 Kommentare) ... comment
... older stories