... newer stories
Goldener Schnitt
wuerg, 12.06.2005 00:23
Der goldene Schnitt ist die Teilung der Einheitsstrecke bei φ=(√5−1)/2≈0,618 im Verhältnis von 1 zu Φ=(√5+1)/2≈1,618 und kommt allenthalben in Natur und Kultur vor. Erstere trifft den goldenen Schnitt natürlich nur ungefähr, wo er sich als günstig und damit von evolutionären Vorteil erwiesen hat. Geometrisch ist er in der Lieblingsfigur der Griechen, dem Pentagramm zu bewundern:
Man erkennt an den zahlreichen ähnlichen Dreiecken, daß a:b=b:c=c:d ist. Dieses stets gleiche Verhältnis wird zu Ehren des griechischen Bildhauers Phideas mit Φ abgekürzt und heißt goldene Zahl, der Kehrwert goldener Schnitt φ. Um auf
Φ = (√5+1)/2 = 1/φ = φ+1 = 2·cos(36°) = 1,6180339887498948482…
φ = (√5−1)/2 = 1/Φ = Φ−1 = 2·sin(18°) = 0,6180339887498948482…
zu kommen, ist dank a=b+c und b=c+d nur eine quadratische Gleichung zu lösen.
Dem modernen Menschen ist das Interesse am Fünfeck abhanden gekommen, und so ist der goldene Schnitt vornehmlich im Zusammenhang mit dem goldenen Rechteck bekannt, das Seiten im Verhältnis 1 zu Φ aufweist. Objektiv ist es etwas schmal, dennoch gilt es als ideal. Wie man ein DIN‑A4-Blatt in der Mitte durchschneiden kann, um ein gleich proportioniertes kleineres DIN‑A5-Blatt zu erhalten, so kann man von einem goldenen Rechteck ein Quadrat abschneiden und erhält wieder ein goldenes Rechteck:
__●__ ____/ / \ \____ ____/ / \ \____ ____/ / \ \____ ____/ / \ c \____ ____/ / \ \____ ____/ / \ \____ / c / d \ c \ ● -- -- -- -- -- -- -- -- ●- -- -- -- -- -● -- -- -- -- -- -- -- -- ● \____ / \ ____/ \ \____ / \ ____/ / \ \____ a / \ ____/ / \ \____ / \ ____/ / \ ●___ ____● / \ / \____ ____/ \ / \ / \__ __/ \ b / \ / __●__ \ / \ / ____/ \____ \ / \ / ____/ \____ \ / \ / ____/ \____ \ / \ /_/ b \_\ / ●-- -- -- -- -- -- -- -- -- -- -- -- -- --●Einem Fünfeck einbeschriebenes Pentagramm (png)
Man erkennt an den zahlreichen ähnlichen Dreiecken, daß a:b=b:c=c:d ist. Dieses stets gleiche Verhältnis wird zu Ehren des griechischen Bildhauers Phideas mit Φ abgekürzt und heißt goldene Zahl, der Kehrwert goldener Schnitt φ. Um auf
Φ = (√5+1)/2 = 1/φ = φ+1 = 2·cos(36°) = 1,6180339887498948482…
φ = (√5−1)/2 = 1/Φ = Φ−1 = 2·sin(18°) = 0,6180339887498948482…
zu kommen, ist dank a=b+c und b=c+d nur eine quadratische Gleichung zu lösen.
Dem modernen Menschen ist das Interesse am Fünfeck abhanden gekommen, und so ist der goldene Schnitt vornehmlich im Zusammenhang mit dem goldenen Rechteck bekannt, das Seiten im Verhältnis 1 zu Φ aufweist. Objektiv ist es etwas schmal, dennoch gilt es als ideal. Wie man ein DIN‑A4-Blatt in der Mitte durchschneiden kann, um ein gleich proportioniertes kleineres DIN‑A5-Blatt zu erhalten, so kann man von einem goldenen Rechteck ein Quadrat abschneiden und erhält wieder ein goldenes Rechteck:
+-------------------------+---------------+ | | | | | | | | | | | | | | | | | | | | | | +---+-+---------+ | | | | | | +---+-+ | | | | | | | | | +-------------------------+-----+---------+Während die Kultur sich auf das goldene Rechteck als schön geeinigt hat, hält sich die Natur an den goldenen Winkel, der bei etwa 137,5° den Vollkreis im Verhältnis 1 zu Φ teilt. Ihn findet man näherungsweise an vielen Pflanzen.
... link (1 Kommentar) ... comment
... older stories