25
Da das Quadrat 25=5²=3²+4² Summe zweier auf­ein­ander­fol­gen­der (nor­maler) Quadrat­zahlen ist, gehört sie zu den weni­gen, die zugleich zen­trierte Qua­drat­zahl 25=1+4+8+12=(1+8)+(4+12) ist. Recht leicht kann aus den ersten 25 natür­lichen Zahlen ein magi­sches Qua­drat gebildet werden. Es ist ist nach Sa­turn (3) und Jupi­ter (4) dem Mars zuge­ordnet. Zu ihm gehören deshalb ne­ben 5 und 25 auch die magi­sche Zahl 65 und die Gesamt­summe 325. Weil 25-1=24 nicht nur durch die dritte Drei­ecks­zahl 6 geteilt werden kann, was die 25 zur vierten zen­trierten Qua­drat­zahl macht, sondern auch durch die weniger inter­es­sante zweite Drei­ecks­zahl 3, ist 25 auch die dritte zen­trierte Acht­eckzahl.

    ●   ●   ●
  ●           ●       ●   ●   ●   ●
●     ○   ○     ●       ○   ○   ○       17 24  1  8 15
    ○       ○         ●   ●   ●   ●     23  5  7 14 16
●       ●       ●       ○   ○   ○        4  6 13 20 22
    ○       ○         ●   ●   ●   ●     10 12 19 21  3
●     ○   ○     ●       ○   ○   ○       11 18 25  2  9
  ●           ●       ●   ●   ●   ●
    ●   ●   ●
25 als zentrierte Achteck- und Quadratzahl, magisches Quadrat (png)

Nach siebenmal sieben Jahren war bei den Juden jedes 50. Jahr ein Erlaß­jahr, später dann im Chri­sten­tum ein hei­liges Jahr, das nunmehr vom Papst alle 25 Jahre durch das Ein­schla­gen einer Tür einge­läutet wird. Diese Bedeutung der 25 ist schlichte Folge der Vier­tei­lung des Jahr­hun­derts, das auch Ver­heira­tete nicht abwar­ten können und schon nach 25 Jahren ihre Silber­hoch­zeit feiern, nicht nach 20 oder 30. Dieses 25-Jahre-​Denken führt auch zu aller­lei merk­würdigen Gedenk­tagen nach 75, 125 oder 375 Ja­hren. Das wird auch dadurch beför­dert, daß Viel­fache von 25 sämt­lich auf 25, 50, 75 oder 00 enden, die 25 sich also gut vererbt, was natür­lich auch nur direkte Folge der Vier­teilung ist.

So wie Numerlogen gerne die iterierte Quersumme bilden, bis sie bei einer Ziffer von 1 bis 9 ange­kommen sind, so kann man es auch mit dem Produkt hand­haben: Immer wieder alle Ziffern multi­pli­zieren, bis man bei 0 bis 9 landet.¹ Die Zahlen 0 bis 9 benö­tigen keinen Schritt, 10 bis 19 einen, um in die End­ziffer über­zugehen, 20 bis 24 erge­ben sofort 0, 2, 4, 6 bzw. 8, aber 25 geht in 10 und ist damit die klein­ste Zahl, die zwei Schritte benö­tigt.

  1 Interessanter als die multi­plika­tive Quer­summe selbst (A031347) sind die Schritt­zahlen bis zur Ein­stellig­keit (A031346) und die klein­sten Zahlen, die eine vorge­gebene Anzahl von Schrit­ten erfor­dern (A003001).

24 | 26 | Fortpflanzung | Vierteilung

... comment