Fünfeckzahlen
Wie die Dreieckszahlen D(n) sich aus den Dreiecken und die Quadratzahlen Q(n) aus den Quadraten ergeben, so leiten sich die Fünfeckzahlen F(n) aus den Fünfecken ab. Mit Sechs-, Sieben und weiteren -ecken ist es nicht anders:
    1          1             1                 1
   2 2        2 2          2   2             2   2
  3 3 3      3 2 3       3  2 2  3         3 2   2 3
 4 4 4 4    4 3 3 4    4  3     3  4     4 3   2   3 4
             4 3 4      4  3 3 3  4      4 3       3 4
              4 4        4       4       4   3   3   4 
               4          4 4 4 4        4     3     4
                                           4       4
                                             4   4
                                               4
Man sieht schon, daß ab 5 keine vernünftige geometrische Grundlage mehr vorhanden ist. Das nehme ich einmal als Grund, von Fünfeckzahlen und nicht von Fünfeckszahlen zu sprechen. Dreieckszahlen sind sozusagen die Zahlen des(!) Dreiecks, während Funkeckzahlen nur solche sind, die vom(!) Fünfeck abgeleitet werden, denn aus rein lautlichen Gründen müßte es ja immer K-eckszahlen oder immer K-eckzahlen heißen. Doch spielt auch die innere Einstellung eine Rolle, ebenso die Häufigkeit der Benutzung. Und außerdem schreibt man doch auch dreißig nicht mit Z, gleichwohl es wie fünfzig klingt.

Wenn man nicht in der Lage ist, den Abbildungen das Bildungsgesetz für die Fünfeckzahlen F(n) oder gar das der K-Eckzahlen, den Polygonalzahlen oder polygonal numbers P(k,n) abzulesen und aus der arithmetischen Reihe das Bildungsgesetz zu finden, dann hilft eine Aufstellung der ersten Zahlen, die man notfalls durch Abzählen ermitteln kann.
P(3,n):   1  3  6  10  15  21  28  36  45  55
P(4,n):   1  4  9  16  25  36  49  64  81 100
P(5,n):   1  5 12  22  35  51  70  92 117 145
P(6,n):   1  6 15  28  45  66  91 120 153 190
Die konstanten Zuwächse 0,1,3,6,10,15,... in den Spalten sind Dreieckszahlen, so daß die sich als richtig erweisende Vermutung naheliegt, daß P(k,n)=P(k-1,n)+D(n-1) ist. Für k=4 ist das die bekannte Beziehung Q(n)=D(n)+D(n-1).

Der obenstehenden Abbildung kann man entnehmen, wie man von der Fünfeckzahl F(n-1) zur Fünfeckzahl F(n) aufsteigt, indem man 3 Kanten mit n Punkten hinzunimmt und bedenkt, daß in 2 Ecken diese Punkte aufeinander fallen. Zusammen sind es also 3n-2 Punkte. Damit ist (n)=F(n-1)+3n-2 und somit
F(n) = 1 + 4 + 7 + 10 + ... + (3n-2) = n*(3n-1)/2
Das ist nicht schwierig zu errechnen, weil es sich um eine arithmetische Reihe handelt. Schnell verallgemeinert sich für das k-Eck wie folgt: Es kommen k-2 Kanten zu n Punkten hinzu und an k-3 Ecken fallen die Punkte aufeinander. Damit ist P(k,n)=P(k,n)+(k-2)n-(k-3) und somit
P(k,n) = 1 + 2(k-2)-(k-3) + 3(k-2)-(k-3) + ... + n(k-2)-(k-3)
       = n((k-2)n-(k-4))/2
weil es sich wieder um eine arithmetische Reihe handelt. Tatsächlich erhalten wir für die ersten Spezialfälle:
D(n) = P(3,n) = n(1n+1)/2 = n(n+1)/2
Q(n) = P(4,n) = n(2n+0)/2 = n*n
F(n) = P(5,n) = n(3n-1)/2
S(n) = P(6,n) = n(4n-2)/2 = n(2n-1)
Dem kann man S(n)=D(2n-1) entnehmen. Damit ist jede zweite Dreieckszahl eine Sechseckzahl, die man aber nicht verwechseln sollte mit der Zahl der Punkte in einem voll ausgefüllten sechseckigen Muster.

Sloane | Figurierte Zahlen

... link (2 Kommentare)   ... comment