... newer stories
Dreieckszahlen
wuerg, 04.05.2005 21:29
Wie man die n‑te Quadratzahl Qₙ von der Zahl der Punkte einer quadratischen Anordnung von n mal n Punkten ableitet, ergibt sich die n‑te Dreieckszahl Dₙ aus einer ebensolchen dreieckigen.
Ich schreibe auch Dₙ für Dreiecks- und Qₙ für Quadratzahlen, nicht nach amerikanischer Sitte Tₙ und Sₙ, was sich von trigonal bzw. square ableitet, gleichwohl ich bei allen Vorbehalten gegen das amerikanische Wesen im allgemeinen die in der Mathematik üblichen internationalen Bezeichnungen bevorzuge. [2] Glücklicherweise sind die Formeln für diese Zahlen so einfach, daß man sie abseits von Erläuterungen zumeist direkt hinschreibt und so D, Q, T und S vermeidet.
Die Formel für Quadratzahlen Qₙ=n⋅n=n² ist einfach. Die n‑te Quadratzahl ist die zweite Potenz (Quadrat) des Argumentes. Für Dreieckszahlen [3] lautet die Formel Dₙ=n(n+1)/2 .Sie ist nicht ganz so einfach zu merken, gleichwohl es dafür auch Bezeichnungen wie n+1 über 2 gibt. Doch wenn man die nicht kennt, nütz einem das auch nichts.
Die Anschauung führt auf die Definition Dₙ=1+2+…+n. Zwar liegen die Verhältnisse hier so einfach, daß man auch direkt aus Abbildungen wie
Aus der Definition Dₙ=1+2+…+n die Formel Dₙ=n(n+1)/2 abzuleiten, ist sehr leicht, wenn man sie schon kennt. Man muß sich lediglich davon überzeugen, daß D₁=1 und Dₙ−Dₙ₋₁=n ist. Oder man sieht die arithmetische Reihe und erinnert sich an die sechste Klasse: Anzahl der Summanden n mal Mittelwert. Für letzteren reicht die halbe Summe aus erstem und letztem Glied, also (1+n)/2.
Gerne wird erzählt, daß der Lehrer von Gauß [4] die Schüler beschäftigen wollte und sie deshalb die Zahlen von 1 bis 100 addieren, also D₁₀₀ bilden ließ. Gauß antwortete sofort 5050, weil er wie fast jeder Mathematiker vorging, der keine Formel für die arithmetische Reihe auswendig gelernt hat, sondern sich einfach fragt, wieviele Summanden (hier 100) es sind und wie groß der Mittelwert (hier 50,5) ist. Das Produkt 100⋅50,5=5050 ist offensichtlich das Ergebnis.
Zwei der drei meiner Leser werden sich nun fragen, warum das offensichtlich sei. Weil die arithmetische Reihe so leicht zu durchschauen ist, daß keine Formel memoriert werden muß. Sie wird jedesmal vom Kleinhirn mühelos abgeleitet oder hochgespült. Es mag selbst Bildungsbürgern, die sich in der Schule vergeblich an Formeln mühten, merkwürdig vorkommen, was Mathematiker alles für klar wie Kloßbrühe, folkloristisch, evident oder gar trivial halten. Zum Verständnis sollten sie einfach daran denken, daß sie selbst auch kaum Vokabeln lernen mußten, weil ihre Eltern französisch parlierten.
[1] Fugen‑S. Kompetenzteam, 01.11.2004.
[2] Bei allem Lobpreis der sowjetischen mathematischen Literatur zu Zeiten der DDR, muß ich dennoch eingestehen, daß sie schon wegen der von westlichen Gepflogenheiten abweichenden Darstellung Schwierigkeiten bereitet. Im Original so und so, doch auch in der Übersetzung. Nicht selten sind dann i und j verwechselt.
[3] The On-line Encyclopedia of Integer Sequences. A000217.
[4] Ich las einmal DER GAUSZSCHE BEWEIS in einer Überschrift. Auf der Schreibmaschine müßte der Lehrer von Gauß DER GAUSZSCHE LEHRER sein. Neuerdings gibt es auch ein großes Eszett.
Quadratzahlen
Q4=16 1 2 3 4 D4=10 1 2 2 3 4 2 2 3 3 3 4 3 3 3 4 4 4 4 4 4 4 4Ich schreibe mit Fugen‑S [1], gleichwohl manche geneigt sind, von Dreieckzahlen oder sogar von einer Dreieckzahl zu sprechen, weil es ja auch nicht Quadratszahl heiße. Doch beim Fugen‑S gewinnen neben Üblichkeit nicht fadenscheinige formale Gründe, sondern lautliche.
Ich schreibe auch Dₙ für Dreiecks- und Qₙ für Quadratzahlen, nicht nach amerikanischer Sitte Tₙ und Sₙ, was sich von trigonal bzw. square ableitet, gleichwohl ich bei allen Vorbehalten gegen das amerikanische Wesen im allgemeinen die in der Mathematik üblichen internationalen Bezeichnungen bevorzuge. [2] Glücklicherweise sind die Formeln für diese Zahlen so einfach, daß man sie abseits von Erläuterungen zumeist direkt hinschreibt und so D, Q, T und S vermeidet.
Die Formel für Quadratzahlen Qₙ=n⋅n=n² ist einfach. Die n‑te Quadratzahl ist die zweite Potenz (Quadrat) des Argumentes. Für Dreieckszahlen [3] lautet die Formel Dₙ=n(n+1)/2 .Sie ist nicht ganz so einfach zu merken, gleichwohl es dafür auch Bezeichnungen wie n+1 über 2 gibt. Doch wenn man die nicht kennt, nütz einem das auch nichts.
Die Anschauung führt auf die Definition Dₙ=1+2+…+n. Zwar liegen die Verhältnisse hier so einfach, daß man auch direkt aus Abbildungen wie
o o o o o x D(5) mal o o o o o x x D(5) mal x o o o x x x o o x x x x 5 Zeilen o x x x x x 6 Spaltendie Beziehung 2⋅Dₙ=n(n+1) und damit Dₙ=n(n+1)/2 ableiten könnte, doch bezieht der Mathematiker sich letztlich nicht auf Bilder. Sie sind ihm nur Anregung und Hilfe. Dadurch werden Mathematiker nicht zu reinen Formalisten. Sie sind im allgemeinen nur besser in der Lage, Anschauung zu formalisieren, um ihre intuitiven Ideen abzusichern. Heute reicht es nicht mehr, ein Bild zu malen und „siehe“ darunter zu schreiben. Ab der vierten Dimension versagt diese Vorgehensweise so und so.
Aus der Definition Dₙ=1+2+…+n die Formel Dₙ=n(n+1)/2 abzuleiten, ist sehr leicht, wenn man sie schon kennt. Man muß sich lediglich davon überzeugen, daß D₁=1 und Dₙ−Dₙ₋₁=n ist. Oder man sieht die arithmetische Reihe und erinnert sich an die sechste Klasse: Anzahl der Summanden n mal Mittelwert. Für letzteren reicht die halbe Summe aus erstem und letztem Glied, also (1+n)/2.
Gerne wird erzählt, daß der Lehrer von Gauß [4] die Schüler beschäftigen wollte und sie deshalb die Zahlen von 1 bis 100 addieren, also D₁₀₀ bilden ließ. Gauß antwortete sofort 5050, weil er wie fast jeder Mathematiker vorging, der keine Formel für die arithmetische Reihe auswendig gelernt hat, sondern sich einfach fragt, wieviele Summanden (hier 100) es sind und wie groß der Mittelwert (hier 50,5) ist. Das Produkt 100⋅50,5=5050 ist offensichtlich das Ergebnis.
Zwei der drei meiner Leser werden sich nun fragen, warum das offensichtlich sei. Weil die arithmetische Reihe so leicht zu durchschauen ist, daß keine Formel memoriert werden muß. Sie wird jedesmal vom Kleinhirn mühelos abgeleitet oder hochgespült. Es mag selbst Bildungsbürgern, die sich in der Schule vergeblich an Formeln mühten, merkwürdig vorkommen, was Mathematiker alles für klar wie Kloßbrühe, folkloristisch, evident oder gar trivial halten. Zum Verständnis sollten sie einfach daran denken, daß sie selbst auch kaum Vokabeln lernen mußten, weil ihre Eltern französisch parlierten.
[1] Fugen‑S. Kompetenzteam, 01.11.2004.
[2] Bei allem Lobpreis der sowjetischen mathematischen Literatur zu Zeiten der DDR, muß ich dennoch eingestehen, daß sie schon wegen der von westlichen Gepflogenheiten abweichenden Darstellung Schwierigkeiten bereitet. Im Original so und so, doch auch in der Übersetzung. Nicht selten sind dann i und j verwechselt.
[3] The On-line Encyclopedia of Integer Sequences. A000217.
[4] Ich las einmal DER GAUSZSCHE BEWEIS in einer Überschrift. Auf der Schreibmaschine müßte der Lehrer von Gauß DER GAUSZSCHE LEHRER sein. Neuerdings gibt es auch ein großes Eszett.
Quadratzahlen
... link (8 Kommentare) ... comment
... older stories