... newer stories
Zweieck
wuerg, 06.05.2005 16:05
Es soll immer noch arme Leute geben, die noch nie ein Zweieck gesehen haben. Dabei kommen sie sogar im täglichen Leben vor. Schneidet man aus der Erdoberfläche eine Zeitzone, wie sie einmal gedacht waren, also ohne willkürliche, geographische oder politische Verhunzungen, dann entsteht ein Zweieck, das am Äquator immerhin 1670 Kilometer breit ist und die beiden Pole als Ecken besitzt. Aber auch der gesamte Rest der Erdoberfläche, der nicht in dieser Zeitzone liegt, bildet ein Zweieck, wenn es auch nicht so aussieht. Es hat die gleichen Ecken und Kanten, nur eben eine andere, viel größere Fläche.
Beim Dreieck ist es nicht anders. Male ich eines auf ein Blatt Papier, so entstehen zwei Gebiete. Das konvexe, endliche ist das Innere, der Rest das Äußere. Wenn ich vom Papierrand abstrahiere, ist es unendlich groß. Das Dreieck Frankfurt–Berlin–Hamburg mag einem ebenso vorkommen. Das Innere liegt innerhalb Deutschlands, der Rest der Welt bildet das Äußere. Warum eigentlich? Was passiert, wenn ich die Hamburg‐Ecke zum Nordpol, die Frankfurt‐Ecke zum Südpol und dann die Berlin‐Ecke Richtung Osten über Tokio nach New York verschiebe?
Zurück zu den Zweiecken. Die idealen Zeitzonen sind gute Beispiele für solche Zweiecke. Sie sehen wie eine Sichel oder Nudel aus und können auf flachem Papier auch so gemalt werden. Vom Dogma der geradlinigen Verbindung zweier Punkte als die kürzeste muß man dazu natürlich abrücken. Aber wir erkennen ja auch Dreiecke als solche, wenn die Kanten ausgebeult sind, wie im Inneren eines Wankelmotors. Beim Rechteck heißt es tonnenförmige Verzerrung.
Neunmalkluge meinen, es dürfe nicht Dreieck und Viereck, sondern müsse Dreiseit bzw. Vierseit heißen, denn in drei Dimensionen nenne man einen Würfel ja auch Sechsflächner oder gar Sechsflach und nicht Zwölfkant oder Achtpunkt. Grundsätzlich haben sie Recht. Man kann sich einen Polyeder als ein Gerüst aus Ecken und Kanten vorstellen, in das Flächen eingesetzt sind. Sinnvoller mag die Vorstellung sein, wie ein Schreiner vom Gesamtraum mehrfach etwas abzuschleifen, bis ein k‑Flächner übrig bleibt. Analog entsteht ein ebenes k‑Seit auch durch mehrfache Beschneidung mit der Schere, nicht nur durch Verbindung von Punkten.
Hilft uns diese Vorstellung beim Zweieck oder Zweiseit? Bei ausschließlich geraden Schnitten offensichtlich nicht. Und ich möchte mir nicht vorstellen, welche Anforderungen an gekrümmte Schnittlinien zu stellen wären. So hat sich der menschliche Sprachgebrauch wohl doch für die sinnhaftere Bezeichnung entschieden und zieht das k‑Eck dem k‑Seit vor. Deshalb ist ein Zweiseit nichts anderes als ein Zweieck, und das besteht aus zwei Punkten, die kreuzungsfrei durch zwei Linien verbunden sind, die sich evtl. überlagern, im Extremfall identisch sind.
Beim Dreieck ist es nicht anders. Male ich eines auf ein Blatt Papier, so entstehen zwei Gebiete. Das konvexe, endliche ist das Innere, der Rest das Äußere. Wenn ich vom Papierrand abstrahiere, ist es unendlich groß. Das Dreieck Frankfurt–Berlin–Hamburg mag einem ebenso vorkommen. Das Innere liegt innerhalb Deutschlands, der Rest der Welt bildet das Äußere. Warum eigentlich? Was passiert, wenn ich die Hamburg‐Ecke zum Nordpol, die Frankfurt‐Ecke zum Südpol und dann die Berlin‐Ecke Richtung Osten über Tokio nach New York verschiebe?
Zurück zu den Zweiecken. Die idealen Zeitzonen sind gute Beispiele für solche Zweiecke. Sie sehen wie eine Sichel oder Nudel aus und können auf flachem Papier auch so gemalt werden. Vom Dogma der geradlinigen Verbindung zweier Punkte als die kürzeste muß man dazu natürlich abrücken. Aber wir erkennen ja auch Dreiecke als solche, wenn die Kanten ausgebeult sind, wie im Inneren eines Wankelmotors. Beim Rechteck heißt es tonnenförmige Verzerrung.
Neunmalkluge meinen, es dürfe nicht Dreieck und Viereck, sondern müsse Dreiseit bzw. Vierseit heißen, denn in drei Dimensionen nenne man einen Würfel ja auch Sechsflächner oder gar Sechsflach und nicht Zwölfkant oder Achtpunkt. Grundsätzlich haben sie Recht. Man kann sich einen Polyeder als ein Gerüst aus Ecken und Kanten vorstellen, in das Flächen eingesetzt sind. Sinnvoller mag die Vorstellung sein, wie ein Schreiner vom Gesamtraum mehrfach etwas abzuschleifen, bis ein k‑Flächner übrig bleibt. Analog entsteht ein ebenes k‑Seit auch durch mehrfache Beschneidung mit der Schere, nicht nur durch Verbindung von Punkten.
Hilft uns diese Vorstellung beim Zweieck oder Zweiseit? Bei ausschließlich geraden Schnitten offensichtlich nicht. Und ich möchte mir nicht vorstellen, welche Anforderungen an gekrümmte Schnittlinien zu stellen wären. So hat sich der menschliche Sprachgebrauch wohl doch für die sinnhaftere Bezeichnung entschieden und zieht das k‑Eck dem k‑Seit vor. Deshalb ist ein Zweiseit nichts anderes als ein Zweieck, und das besteht aus zwei Punkten, die kreuzungsfrei durch zwei Linien verbunden sind, die sich evtl. überlagern, im Extremfall identisch sind.
... link (5 Kommentare) ... comment
... older stories