... newer stories
ANS
wuerg, 02.03.2006 20:34
Zur Darstellung der natürlichen Zahlen verwenden wir üblicherweise die auch Ziffern genannten Zeichen 0, 1, 2, 3, 4, 5, 6, 7, 8 und 9. Einer Ziffernfolge, zumeist als Zeichenkette aus diesen Ziffern geschrieben, kann leicht in der uns bekannten Weise eine Zahl zugeordnet werden. Umgekehrt kann jede natürliche Zahl auch als eine solche Ziffernfolge geschrieben werden. Diese dezimale Darstellung der natürlichen Zahlen ist eindeutig, wenn man keine führenden Nullen erlaubt. [1]
Bekanntlich wurde die 0 erst spät benutzt, manche sagen erfunden. Sie war entbehrlich, solange man mit Rechenbrettern arbeitete, wie die Römer für jede Stelle andere Zahlzeichen hatte oder sich wie die Babylonier die leeren Positionen nur dachte bzw. andeutete. Auch ein Positionssystem wie unseres, das den Wert einer Ziffer von ihrer Position abhängig macht, benötigt nicht unbedingt eine Null.
Warum verzichtet der Finger zählende Mensch auf ein eigenes Zahlzeichen für zehn? Mit einem solchen Zeichen, das ich hier wie die Römer als X schreibe, hätte man sich die Null ersparen können. Sonst bliebe alles, wie wir es kennen. Eine um eins höhere Position erhöht den Wert um den Faktor zehn. Dieses alternative Zahlsystem (ANS, alternate number system) ist also wie das gebräuchliche (ENS, existing number system) ein Dezimalsystem:
Gewiß muß man sich daran gewöhnen, im ANS zu rechnen. Es allein deshalb dem ENS als unterlegen zu sehen, ist natürlich unfair. Man sollte sich schon fragen, ob jahrelanges Training in der Schule nicht die gleiche Geläufigkeit nach sich zöge. Ich glaube nicht. Betrachten wir dazu nur einfache Additionsaufgaben, die viele Menschen nur durchzuführen imstande sind, wenn sie die Überträge notieren. Ein Beispiel:
Oftmals überlegen ist das ANS bei Zahlenspielereien mit Ziffernvertauschungen. So entsteht nicht die Frage, ob 3 oder 03 die Umkehrung von 30 ist. Die Suche nach EPORN, also nach Zahlen, die auf zweifache Weise durch das Produkt zweier ziffernvertauschter Zahlen sind, führt nicht auf eine Reihe von entarteten Fällen wie dem der kleinsten ENS-EPORN
[1] Wikipedia. Bijective Numeration. Das gilt als mathematische Folklore und wurde deshalb häufig ‚wiederentdeckt‘. Im Artikel ist Forslund [2] erwähnt, aber auch ein Band von Donald E. Knuth [3], den ich mein eigen nenne.
[2] Robert R. Forslund: A Logical Alternative to the Existing Positional Number System. Southwest Journal of Pure and Applied Mathematics 1:27, 1995. Nicht als gedruckte Zeitschrift und im Netz wohl auch nur mit Handständen. Hier als PS-Datei, woanders auch DVI. Mein alter Verweis, der dem unter A007932 (ANS-Ternärzahlen ohne 0, aber mit 3) entsprach, scheint zwischenzeitlich tot. So wird sich das ANS nie durchsetzen.
[3] Donald E. Knuth: The Art of Computer Programming - Volume 2 / Seminumerical Algorithms. Addison-Wesley, 2. Auflage, 1981. Die Wikipedia [1] verweist recht verquer auf auf eine Bemerkung in der der Antwort zur Übung 4.1-24 auf Seite 195 der 1. Auflage: „If we drop the restriction 0∈D, there are many other cases, some of which are quite interesting, especially {1,2,3,4,5,6,7,8,9,10}, …“
13 | 31 | EPORN
Bekanntlich wurde die 0 erst spät benutzt, manche sagen erfunden. Sie war entbehrlich, solange man mit Rechenbrettern arbeitete, wie die Römer für jede Stelle andere Zahlzeichen hatte oder sich wie die Babylonier die leeren Positionen nur dachte bzw. andeutete. Auch ein Positionssystem wie unseres, das den Wert einer Ziffer von ihrer Position abhängig macht, benötigt nicht unbedingt eine Null.
Warum verzichtet der Finger zählende Mensch auf ein eigenes Zahlzeichen für zehn? Mit einem solchen Zeichen, das ich hier wie die Römer als X schreibe, hätte man sich die Null ersparen können. Sonst bliebe alles, wie wir es kennen. Eine um eins höhere Position erhöht den Wert um den Faktor zehn. Dieses alternative Zahlsystem (ANS, alternate number system) ist also wie das gebräuchliche (ENS, existing number system) ein Dezimalsystem:
ENS: 1 ... 9 10 11 ... 20 21 ... 99 100 101 ... 109 110 111 ... ANS: 1 ... 9 X 11 ... 1X 21 ... 99 9X X1 ... X9 XX 111 ...Robert R. Forslund [2] hält das ANS unserem ENS für überlegen, denn dank der fehlenden 0 ist jeder Ziffernkette eindeutig eine Zahl zugeordnet und umgekehrt. Im ANS gibt es 10 (besser X) einstellige, 100 (besser 9X) zweistellige und 1000 (besser 99X) dreistellige Zahlen. In unserem ENS sind es nur 9, 90 und 900.
Gewiß muß man sich daran gewöhnen, im ANS zu rechnen. Es allein deshalb dem ENS als unterlegen zu sehen, ist natürlich unfair. Man sollte sich schon fragen, ob jahrelanges Training in der Schule nicht die gleiche Geläufigkeit nach sich zöge. Ich glaube nicht. Betrachten wir dazu nur einfache Additionsaufgaben, die viele Menschen nur durchzuführen imstande sind, wenn sie die Überträge notieren. Ein Beispiel:
ENS ANS 2005 19X5 1907 18X7 ..1. .21. ---- ---- 3912 3912Schon bei der Addition zweier Zahlen treten im ANS Überträge von 2 auf. Das haut einen geübten Rechner nicht vom Hocker, zumal er mit 10 gut rechnen kann und Zahlen ohne X der üblichen Darstellung entsprechen. Doch eine kleine Erschwernis ist durchaus schon bei leichten Addditionen zu erkennen und damit ein Anzeichen dafür, daß die 0 gegenüber der X wohl die bessere Wahl ist, die Evolution sich hier nicht geirrt hat.
Oftmals überlegen ist das ANS bei Zahlenspielereien mit Ziffernvertauschungen. So entsteht nicht die Frage, ob 3 oder 03 die Umkehrung von 30 ist. Die Suche nach EPORN, also nach Zahlen, die auf zweifache Weise durch das Produkt zweier ziffernvertauschter Zahlen sind, führt nicht auf eine Reihe von entarteten Fällen wie dem der kleinsten ENS-EPORN
2520 = 210 · 012 = 021 · 120Im ANS muß man schon etwas über diese Zahl hinausgehen. Die kleinste aller ANS-EPORN ist
634X4 = 441 · 144 = 252 · 252 = 63504Da in den Faktoren keine X vorkommt, ist die Zahl zugleich normale ENS-EPOPN, nämlich die kleinste unter den nicht entarteten. Es gibt auch alleinige ANS-EPORN. Die kleinste ist:
1623X9 = 961 · 169 = 3X3 · 3X3, also ANS-EPORN 162409 = 961 · 169 = 403 · 403 scheitert im ENSDer skeptische Leser wird sich fragen, ob 162409 nicht auf eine andere Weise spiegelbildlich faktorisiert werden könnte und so dennoch ENS-EPORN sein könnte. Doch weitere zwei Faktoren lassen sich aus 162409=13·13·31·31 offensichtlich nicht zusammenbasteln.
[1] Wikipedia. Bijective Numeration. Das gilt als mathematische Folklore und wurde deshalb häufig ‚wiederentdeckt‘. Im Artikel ist Forslund [2] erwähnt, aber auch ein Band von Donald E. Knuth [3], den ich mein eigen nenne.
[2] Robert R. Forslund: A Logical Alternative to the Existing Positional Number System. Southwest Journal of Pure and Applied Mathematics 1:27, 1995. Nicht als gedruckte Zeitschrift und im Netz wohl auch nur mit Handständen. Hier als PS-Datei, woanders auch DVI. Mein alter Verweis, der dem unter A007932 (ANS-Ternärzahlen ohne 0, aber mit 3) entsprach, scheint zwischenzeitlich tot. So wird sich das ANS nie durchsetzen.
[3] Donald E. Knuth: The Art of Computer Programming - Volume 2 / Seminumerical Algorithms. Addison-Wesley, 2. Auflage, 1981. Die Wikipedia [1] verweist recht verquer auf auf eine Bemerkung in der der Antwort zur Übung 4.1-24 auf Seite 195 der 1. Auflage: „If we drop the restriction 0∈D, there are many other cases, some of which are quite interesting, especially {1,2,3,4,5,6,7,8,9,10}, …“
13 | 31 | EPORN
... link (6 Kommentare) ... comment
... older stories