DIN-A4-Papier
Unsere normalen Papier­formate haben sich glück­licher­weise nicht am goldenen Schnitt ausge­richtet, sondern an der einfachen Teil­barkeit. Ohne diese starke Eigen­schaft hätten die DIN-​Formate in mehr als 20 Jahren mit zahl­reichen Drucker­problemen der Vormacht von 8×12 Zoll großem Endlos­papier nicht wider­standen. Ich erinnere mich noch gerne an meine ersten ordent­lich forma­tierten Adressen auf handels­üblichen Aufkle­bern mit sieben mal drei Stück pro DIN‑A4-​Blatt. Doch fünfzehn Jahre später gibt immer noch Behörden und Reise­büros, die um einen Zenti­meter zu lange Papier­bögen bevor­zugen.

Wie groß ist aber ein DIN‑A4-​Blatt und warum? Zunächst fordert die Teilbar­keit in zwei gleiche und wie das Ausgangs­blatt propor­tio­nierte Hälften für die Breite b und die Höhe hb die Bezie­hung „b zu h wie h/2 zu b“, also h=b·√2 im Hoch­format. Für die abso­lute Größe muß beach­tet werden, daß ein DIN‑A0-​Blatt genau einen Quadrat­meter groß sein soll, womit neben h=b·√2 auch b·h=1m² gelten muß. Damit ist h in Metern gemes­sen die vierte Wurzel aus 2, die Breite b in Metern der Kehrwert davon. Da auf Milli­meter gerundet wird ist ein DIN‑A0-​Blatt 1,189 Meter hoch und 0,841 Meter breit. Ein DIN‑Ai-​Blatt entsteht daraus durch i‑fache Halbie­rung samt Abrun­dung auf Milli­meter. Es ist also

hi = ⌊1189/2i⌋ mm ≈ 2i/2+1/4 Meter hoch und
bi =  ⌊841/2i⌋ mm ≈ 2i/2−1/4 Meter breit.

Das allseits bekannte DIN‑A4-​Blatt mißt somit 297×210 Milli­meter.

Für die Fläche Fᵢ=bᵢ·hᵢ eines DIN‑Ai-​Blattes gilt die einfachere Formel Fᵢ=(1/2)m². Damit hat ein DIN‑A4-​Blatt 1/16 Quadratmeter und wiegt 5 Gramm, wenn es sich um normales Papier von 80 Gramm pro Quadrat­meter handelt. In einen Standard­brief sollte man deshalb nicht mehr als drei Blätter stecken.

Das alles ist nicht tiefschürfend, doch mir ein schönes Beispiel, wo in unserem Alltag ständig die vierte Wurzel vorkommt, wenn auch nicht so sichtbar wie die Quadrat­wurzel. Zwar haben moderne Kopierer Tasten für die gängigen Ver­größe­rungen und Ver­kleine­rungen, doch schadet es nicht zu wissen, daß eine Ver­größe­rung von A4 auf A3 wegen √2=1,4142… unge­fähr 140 Pro­zent beträgt und umge­kehrt eine Ver­kleine­rung auf 70 Pro­zent redu­ziert. Dann macht die Anwei­sung des Chefs „100 Ver­kleine­rungen auf A5 mit etwas mehr Rand, aber im Tieff­lug“ nicht nervös, weil sie sogleich in „bitte 100 Ko­pien auf 65% ver­klei­nert, so schnell es Ihnen möglich ist“ über­setzt werden kann.

... link (4 Kommentare)   ... comment



Goldener Schnitt
Der goldene Schnitt ist die Teilung der Einheits­strecke bei φ=(√5−1)/2≈0,618 im Ver­hältnis von 1 zu Φ=(√5+1)/2≈1,618 und kommt allent­halben in Natur und Kultur vor. Erstere trifft den goldenen Schnitt natür­lich nur ungefähr, wo er sich als günstig und damit von evolu­tio­nären Vorteil erwie­sen hat. Geome­trisch ist er in der Lieb­lings­figur der Griechen, dem Penta­gramm zu bewundern:
                                __●__                                                   
                           ____/ / \ \____                                             
                      ____/     /   \     \____                                         
                 ____/         /     \         \____                               
            ____/             /       \ c           \____                               
       ____/                 /         \                 \____                          
  ____/                     /           \                     \____                     
 /              c          /      d      \          c              \                    
● -- -- -- -- -- -- -- --- -- -- -- -- --- -- -- -- -- -- -- -- ●                   
 \____                   /                 \                   ____/                    
  \   \____             /                   \             ____/   /                     
   \       \____     a /                     \       ____/       /                      
    \           \____ /                       \ ____/           /                       
     \               ●___                  ____●               /                        
      \             /     \____       ____/     \             /                         
       \           /           \__ __/           \ b         /                          
        \         /             __●__             \         /                           
         \       /         ____/     \____         \       /                            
          \     /     ____/               \____     \     /                             
           \   / ____/                         \____ \   /                              
            \ /_/                 b                 \_\ /                               
             ●-- -- -- -- -- -- -- -- -- -- -- -- -- --
Einem Fünfeck einbe­schrie­benes Penta­gramm (png)

Man erkennt an den zahl­reichen ähn­lichen Drei­ecken, daß a:b=b:c=c:d ist. Dieses stets gleiche Ver­hältnis wird zu Ehren des griechi­schen Bild­hauers Phideas mit Φ abge­kürzt und heißt gol­dene Zahl, der Kehr­wert goldener Schnitt φ. Um auf

Φ = (√5+1)/2 = 1/φ = φ+1 = 2·cos(36°) = 1,6180339887498948482…
φ = (√5−1)/2 = 1/Φ = Φ−1 = 2·sin(18°) = 0,6180339887498948482…

zu kommen, ist dank a=b+c und b=c+d nur eine quadra­tische Glei­chung zu lösen.

Dem modernen Menschen ist das Interesse am Fünfeck abhanden gekommen, und so ist der goldene Schnitt vornehm­lich im Zusammen­hang mit dem golde­nen Recht­eck bekannt, das Seiten im Ver­hält­nis 1 zu Φ aufweist. Objek­tiv ist es etwas schmal, dennoch gilt es als ideal. Wie man ein DIN‑A4-​Blatt in der Mitte durch­schnei­den kann, um ein gleich propor­tionier­tes klei­neres DIN‑A5-​Blatt zu erhalten, so kann man von einem gol­denen Recht­eck ein Quadrat abschnei­den und erhält wieder ein gol­denes Recht­eck:
+-------------------------+---------------+
|                         |               |   
|                         |               |   
|                         |               |   
|                         |               |   
|                         |               |   
|                         |               |   
|                         |               |   
|                         +---+-+---------+  
|                         |   | |         |   
|                         +---+-+         |   
|                         |     |         |   
|                         |     |         |   
+-------------------------+-----+---------+
Während die Kultur sich auf das goldene Recht­eck als schön geeinigt hat, hält sich die Natur an den gol­denen Winkel, der bei etwa 137,5° den Voll­kreis im Ver­hält­nis 1 zu Φ teilt. Ihn findet man nähe­rungs­weise an vielen Pflanzen.

... link (1 Kommentar)   ... comment



Fibonacci-Zahlen
Nach den Prim- und den Polygonal­zahlen sind die Fibo­nacci-​Zahlen von weit­reichen­dem Inter­esse. Die erste und zweite Fibo­nacci-​Zahl lauten einfach F₁=F₂=1, jede weitere entsteht durch Addi­tion der beiden vorange­henden, also Fₙ=Fₙ₋₁+Fₙ₋₂. Das ergibt die Fibo­nacci-​Folge [1]

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Sehr gerne wird die Entstehung dieser Folge mit Kanin­chen verdeut­licht. Werfen sie an ihrem zweiten, dritten, vierten und jedem weiteren Geburts­tag ein kleines Häs­chen [2], ver­mehren sie sich wie folgt:
Beginn des 1. Jahres:   0
                        |
Beginn des 2. Jahres:   1--------------+
                        |              |
Beginn des 3. Jahres:   1--------+     0
                        |        |     |
Beginn des 4. Jahres:   1-----+  0     1-----+ 
                        |     |  |     |     |
Beginn des 5. Jahres:   1--+  0  1--+  1--+  0
                        |  |  |  |  |  |  |  |
Beginn des 6. Jahres:   1  0  1  1  0  1  0  1
Darin bezeichnet 0 einen neuge­borenen Hasen und 1 einen nach seinem ersten Ge­burts­tag. Ordnen sie sich wie darge­stellt an, entsteht die Fibonacci-​Folge 10110101…, für die man keine Kanin­chen benötigt: Mit 0 beginnend wird schritt­weise 0 durch 1 und 1 durch 10 ersetzt.

Obwohl die Fibo­nacci-​Zahlen gerne in der Natur vorkommen, ist mir ein zutref­fen­deres Beispiel aus dem Baube­reich doch lieber: Es ist eine 20 cm hohe Mauer mit Ziegel­steinen der Größe 10 mal 20 cm zu ver­kleiden. Diese Steine können waage­recht oder senk­recht ver­baut werden. Wieviele Muster aₙ für eine Mauer von n Dezi­metern Länge sind möglich? Offensicht­lich gibt es 1, 2 und 3 Muster für Mauern der beschei­denen Länge von 10, 20 und 30 Zenti­metern.
+---+                   +---+---+   +-------+
|   |                   |   |   |   |       |
|   |                   |   |   |   +-------+
|   |                   |   |   |   |       |
+---+                   +---+---+   +-------+

+---+---+---+   +---+-------+   +-------+---+
|   |   |   |   |   |       |   |       |   |
|   |   |   |   |   +-------+   +-------+   |
|   |   |   |   |   |       |   |       |   |
+---+---+---+   +---+-------+   +-------+---+
Für größere n wähle ich eine kompaktere Darstel­lung mit | für einen senk­rechten und == für zwei waage­rechte Ziegel:
n=4:  ||||   ||==   |==|   ==||   ====

n=5:  |||||   |||==    ||==|    |==||
      
      ==|||   |====    ==|==    ====|
Damit ist Verdacht auf Fibonacci gegeben, und tatsäch­lich führt die folgende Über­legung auf aₙ=aₙ₋₁+aₙ₋₂: Mauern der Länge n mit einem senk­rechten Ziegel am Ende gibt es soviele wie Mauern der Länge n−1, und Mauern der Länge n mit zwei waage­rechten Ziegeln am Ende soviele wie von der Länge n−2. Mit senk­rechtem Ziegel am Ende sind es demnach aₙ₋₁ und mit waage­rechten aₙ₋₂, insgesamt also aₙ=aₙ₋₁+aₙ₋₂. Da zudem a₁=1=F₂ und a₂=2=F₃ ist, muß aₙ=Fₙ₊₁ sein. [3]

Weitgehend bekannt ist das sich der goldenen Zahl nähernde Verhäl­tnis zweier aufein­ander­folgenden Fibonacci-​Zahlen:
  3/2  = 1,500000    5/3  = 1,666667
  8/5  = 1,600000   13/8  = 1,625000
 21/13 = 1,615385   34/21 = 1,619048
 55/34 = 1,617647   89/55 = 1,618182
Die Darstellung in zwei Spalten soll verdeut­lichen, daß die Nähe­rungen abwech­selnd unter und über der goldenen Zahl Φ≈1,618 liegen. Mit einem kleinen Phi wird der goldene Schnitt φ≈0,618 bezeich­net. Es gilt:

Φ = (√5+1)/2 = 1/φ = φ+1 = 1,6180339887498948482...
φ = (√5−1)/2 = 1/Φ = Φ−1 = 0,6180339887498948482...

Mit diesen beiden an vielen Stellen vor­kommen­den Zahlen, lautet die Binet­sche Formel [4] für die Fibo­nacci-​Zahlen:

Fₙ = ( Φn − (−φ)n ) / √5

Im wesentlichen wächst also Fₙ in jedem Schritt um den Faktor Φ. Von der damit gege­benen Mittel­linie Φⁿ/√5 weicht Fₙ um den immer kleiner werden­den Betrag φⁿ/√5 ab. [5]

[1] The On-Line Ecyclopedia of Integer Sequences. A000203

[2] Ich weiß, Has*innen sind keine Kanin­chen, und auch die gebären­den unter ihnen werfen nicht beliebig lange genau ein Häs­chen­/elein pro Jahr. Haupt­sache es entstehen die Fibo­nacci-​Zahlen und die Fibo­nacci-​Folge. Man kann die Zibben auch schon im ersten Jahr werfen und dafür mit der Geburt eines zweiten Zibbe­leins sterben lassen. So habe ich es in meinem Beitrag zur Zahl 13 geschehen lassen.

[3] Der aufmerksame Leser wird nun einwenden können, die Über­legung sei unvoll­ständig, weil immer nur gerad­linig abschlie­ßende Mauern verlän­gert würden. Doch habe ich dies still­schwei­gend voraus­gesetzt, da ja grad­linig begonnen wird und auch nur grad­linig fortge­setzt werden kann. Ein Ziegel­versatz wie an Haus­wänden ist also nicht möglich. Aber tatsäch­lich steckt in der Ungrad­linig­keit die Heraus­forde­rung, wenn man die Mauer höher als zwei Ein­heiten anlegt.

[4] Die Binetsche Formel ergibt sich aus folgender Über­legung: Da Φ und −φ Wurzeln der Gleichung x²=x+1 sind, erfüllen nicht nur die beiden Folgen der Potenzen von Φ und −φ die Rekur­sions­glei­chung der Fibo­nacci-​Folge, sondern auch alle Linear­kombina­tionen αΦⁿ+β(−φ). Aus den Gleichungen αΦβφ=F₁=1 und αΦ²+βφ²=F₂=1 ergeben sich für die Fibo­nacci-​Folge die beiden Gewichte α=1/√5 und β=−1/√5.

[5] Mit dem Taschen­rechner berechnet sich zum Beispiel die 12. Fibo­nacci-​Zahl wie folgt: 1+√5=/2=^12=/√5 ergibt 144,001…, gerundet F₁₂=144.

Goldener Schnitt

... link (3 Kommentare)   ... comment



Eineck
Wie ein Eineck aussehen sollte, ob es eine Kante hat, wie lang und gerade sie sein muß und ob sie eine Fläche umschließt, habe ich unter dem Titel Zweieck disku­tiert. Hier soll es nur um die Fort­setzung der Frage gehen, aus wievielen Punkten denn ein Zweieck oder ein Eineck analog zu den zen­trier­ten Drei­ecks­zahlen, Viereck­zahlen usw. gebil­det werden, was also zen­trierte Zwei- und Eineck­zahlen sind.

Aus der Formel Pᵏₙ=n·[(k−2)n−(k−4)]/2 für die normalen k‑Eck­zahlen ergeben sich:
         n:  1  2  3   4   5   6   7   8   9
Zweieck Zn:  1  2  3   4   5   6   7   8   9
Dreieck Dn:  1  3  6  10  15  21  28  36  45
Viereck Qn:  1  4  9  16  25  36  49  64  81
Fünfeck Fn:  1  5 12  22  35  51  70  92 117
Normale Eineck­zahlen machen wenig Sinn, denn sie würden nach der Formel n(3−n)/2 bereits negativ. Wie aber steht es um die zen­trier­ten Zwei- und Eineck­zahlen? Eine Formel für die zen­trier­ten k-Eck­zahlen lautet pᵏₙ=1+k·Dₙ₋₁. Damit ergibt sich folgende Tabelle:
         n:  1  2   3   4   5   6   7   8   9
Eineck  en:  1  2   4   7  11  16  22  29  37
Zweieck zn:  1  3   7  13  21  31  43  57  73
Dreieck an:  1  4  10  19  31  46  64  85 109
Viereck qn:  1  5  13  25  41  61  85 113 145
Fünfeck fn:  1  6  16  31  51  76 106 141 181
Die zentrierten Zwei- und sogar die Eineck­zahlen wachsen mit zuneh­menden n wie die übrigen eben­falls quadra­tisch an. Erst die Nulleck­zahlen stag­nieren bei 1. Sie bestehen nur aus dem Mitten­punkt mit 0 Drei­ecken drum­herum. Die Vorstel­lung
                                /2--4--6--8\
1--2--3--4--5--6   und nicht   1            10
                                \3--5--7--9/
von den normalen Zweieck­zahlen läßt sich offen­sicht­lich nicht auf zentrierte über­tragen. Man kommt auf ein Bild wie das linke
                          A   C   C   C   C
A                   B       A   C   C   C       A 
  A               B       A   A   C   C   B       A
A   A           B   B       A   A   C   B       A   A
  A   A   O   B   B       A   A   O   B   B       A   A   O
A   A           B   B       A   D   B   B       A   A
  A               B       A   D   D   B   B       A
A                   B       D   D   D   B       A
                          D   D   D   D   B
im dem vom Viereck in der Mitte zwei der vier Flügel fehlen. Für das Eineck bleibt wie im rechten Bild nur ein Flügel samt Mitten­punkt, insge­samt also eₙ=1+Dₙ₋₁. Das sind die sog. Pizzazahlen pₙ=1+Dₙ=eₙ₊₁, die Maximal­zahl der Pizza­stücke, die durch n gerade Schnitte möglich sind.

einfache und zentrierte Polygonalzahlen | Zweieck

... link (0 Kommentare)   ... comment



Zentrierte Polygonalzahlen
Die Dreieckszahlen, Quadrat­zahlen, Fünfeck­zahlen, Sechseck­zahlen usw. werden nach griechi­schen Vorstel­lungen gebildet, indem man stets ein größeres Polygon hinzunimmt:
    1          1             1                 1
   2 2        2 2          2   2             2   2
  3 3 3      3 2 3       3  2 2  3         3 2   2 3
 4 4 4 4    4 3 3 4    4  3     3  4     4 3   2   3 4
             4 3 4      4  3 3 3  4      4 3       3 4
              4 4        4       4       4   3   3   4 
               4          4 4 4 4        4     3     4
                                           4       4
                                             4   4
                                               4
Doch ab den Fünfeck­zahlen werden die Bilder löchrig, und schon bei den Sechseck­zahlen fragt man sich, warum sie nicht wie folgt aussehen:
                           4 4 4 4
              3 3 3       4 3 3 3 4
     2 2     3 2 2 3     4 3 2 2 3 4
1   2 1 2   3 2 1 2 3   4 3 2 1 2 3 4
     2 2     3 2 2 3     4 3 2 2 3 4
              3 3 3       4 3 3 3 4
                           4 4 4 4
Dieses Schema kann auf alle k‑Ecke ausgedehnt werden, sieht jedoch nur für Quadrate, Fünf- und Sechs­ecke gut aus:
      4         4---4---4---4          4             4 4 4 4
     /3\        | 3---3---3 |        4 3 4          4 3 3 3 4
    4/2\4       4 | 2---2 | 4      4 3 2 3 4       4 3 2 2 3 4
   /3/1\3\      | 3 | 1 | 3 |    4 3 2 1 2 3 4    4 3 2 1 2 3 4
  4/2---2\4     4 | 2---2 | 4     4 3 2 2 3 4      4 3 2 2 3 4
 /3---3---3\    | 3---3---3 |      4 3 3 3 4        4 3 3 3 4
4---4---4---4   4---4---4---4       4 4 4 4          4 4 4 4
Die solchen Gebilden zugeord­neten Punkte­zahlen heißen zen­trierte Poly­gonal­zahlen, die ich mit pᵏₙ für das k‑Eck mit jeweils n Punk­ten auf der äußeren Kante abkürzen will. Sie lassen sich dank
pkn = 1 + k + 2k +3k + ... + (n-1)k
    = 1 + k·(1+2+3+...+(n-1))
    = 1 + k·D(n-1)
    = 1 + k·n(n-1)/2
leichter berechnen als die (unzen­trierten, gewöhn­lichen, ein­fachen, nor­malen) Poly­gonal­zahlen
Pkn = 1 + (1+(k-2)) + (1+2(k-2) + (1+3(k-2)) + ... + (1+(n-1)(k-2))
    = n + (1+2+3+...+(n-1))·(k-2)
    = n + D(n-1)·(k-2)
    = n + (n(n-1)/2)·(k-2)
    = n·[(k-2)n-(k-4)]/2
In beiden Formeln ist Dₙ=P³ₙ=n(n−1)/2 die (n−1)‑te Drei­ecks­zahl. Wie man in geeig­neten Dar­stel­lungen der einfachen Poly­gonal­zahlen
B B B B A           B B B B A            B B B B A
 B B B A A         C B B B A A          C B B B A A
  B B A A A       C C B B A A A        C C B B A A A
   B A A A A     C C C B A A A A      C C C B A A A A
    1 2 3 4 5   C C C C 1 2 3 4 5    C C C C 1 2 3 4 5
                                     D D D D
       k=4             k=5            D D D     k=6
                                       D D
   in allen drei Bildern: n=5           D
die Formel Pᵏₙ=n+(k−2)·Dₙ erken­nen kann, ist dies auch bei den zen­trierten
 k=3: C    k=4: D---C---C---C    k=5:  D        k=6: E D D D
     /C\        | D---C---C |        D D C          E E D D C
    C/C\B       D | D---C | B      D D D C C       E E E D C C
   /C/o\B\      | D | o | B |    E E E o C C C    F F F o C C C
  C/A---B\B     D | A---B | B     E E A B B B      F F A B B B
 /A---A---B\    | A---A---B |      E A A B B        F A A B B
A---A---A---B   A---A---A---B       A A A B   n=4    A A A B
mit der Formel pᵏₙ=1+k·Dₙ der Fall. Andere Figuren verdeut­lichen weitere Bezie­hungen. So lassen sich Quadrate gemäß
              4---4---4---4     4---4---4---4
3---3---3     |           |     | 3---3---3 |
|       |     4   2---2   4     4 | 2---2 | 4
3   1   3  +  |   |   |   |  =  | 3 | 1 | 3 |
|       |     4   2---2   4     4 | 2---2 | 4
3---3---3     |           |     | 3---3---3 | 
              4---4---4---4     4---4---4---4
zusammen­setzen. Deshalb ist qₙ=Qₙ+Qₙ=n²+(n−1)², worin qₙ=p die n-te zen­trierte Quadrat­zahl und Qₙ=P die normale Quadrat­zahl ist.

Die den Griechen so wichtige einfache Fünfeck­zahl Fₙ=P=n(3n−1)/2 kann wie in der mitt­leren Figur der dritt­letzten Abbildung als halbes zen­trier­tes Sechseck gesehen werden. Das bedeutet hₙ=2·Fₙ−(2n−1), eine von vielen Bezie­hungen, die ich hier nicht aus­breiten kann und will.

Dreieckszahlen | Quadratzahlen

... link (1 Kommentar)   ... comment



Teilbarkeitsregeln
Manche Zahlen haben einfache Teilbar­keits­regeln, andere nicht. Das liegt auch an ihrer Dar­stel­lung zur Basis 10, die eine mehr oder minder günstige Vor­arbeit leistet. Des­halb gibt es ein­fache, allge­mein bekannte Regeln für die Teiler der Zahlen 9, 10, 11 und 100, also für 2, 3, 4, 5, 9, 10, 11, 20, 25, 50 und 100.

1: Jede ganze Zahl ist durch 1 teilbar.
2: Eine Zahl ist durch 2 teilbar, wenn die letzte Stelle durch 2 teilbar ist. Das sind die geraden Zahlen mit 0, 2, 4, 6 oder 8 als End­ziffer.
3: Eine Zahl ist durch 3 teilbar, wenn ihre Quer­summe [1] durch 3 teilbar ist.
4: Eine Zahl ist durch 4 teilbar, wenn die letzten zwei Stellen durch 4 teilbar sind. Das wie­derum ist der Fall, wenn diese beiden zweimal hal­biert werden können.
5: Eine Zahl ist durch 5 teilbar, wenn die letzte Stelle durch 5 teilbar ist. Das sind die Zahlen mit End­ziffer 0 oder 5.
6: Eine Zahl ist durch 6 teilbar, wenn sie durch 2 und durch 3 teilbar ist.
7: Eine Zahl ist durch 7 teilbar, wenn die alter­nie­rende Quer­summe der Dreier­blöcke [4] durch 7 teilbar ist.
8: Eine Zahl ist durch 8 teilbar, wenn die letzten drei Stellen durch 8 teilbar sind. Das wie­derum ist der Fall, wenn diese drei dreimal hal­biert werden können.
9: Eine Zahl ist durch 9 teilbar, wenn ihre Quer­summe [1] durch 9 teilbar ist.
10: Eine Zahl ist durch 10 teilbar, wenn sie auf  0 endet.
11: Eine Zahl ist durch 11 teilbar, wenn die alter­nierende Quer­summe [2] durch 11 teilbar ist.
12: Eine Zahl ist durch 12 teilbar, wenn sie durch 3 und durch 4 teilbar ist.
13: Eine Zahl ist durch 13 teilbar, wenn die alter­nie­rende Quer­summe der Dreierblöcke [4] durch 13 teilbar ist.
14: Eine Zahl ist durch 14 teilbar, wenn sie durch 2 und durch 7 teilbar ist.
15: Eine Zahl ist durch 15 teilbar, wenn sie durch 3 und durch 5 teilbar ist.
16: Eine Zahl ist durch 16 teilbar, wenn die letzten vier Stellen durch 16 teilbar sind. Das wie­derum ist der Fall, wenn diese vier viermal ha­lbiert werden können.
17: Man kann fortgesetzt das Fünf­fache der letzten Ziffer von den übrigen abziehen und den Rest auf Teil­bar­keit prüfen. [5]
18: Eine Zahl ist durch 18 teilbar, wenn sie durch 2 und durch 9 teilbar ist.
19: Man kann fortgesetzt das Doppelte der letzten Ziffer den übrigen zuschla­gen und den Rest auf Teil­bar­keit prüfen. [5]
20: Eine Zahl ist durch 20 teilbar, wenn die letzte Ziffer eine 0 und die vor­letzte gerade ist.
21: Eine Zahl ist durch 21 teilbar, wenn sie durch 3 und durch 7 teilbar ist.
22: Eine Zahl ist durch 22 teilbar, wenn sie durch 2 und durch 11 teilbar ist.
23: Man kann fortgesetzt das Sieben­fache der letzten Ziffer den übri­gen zu­schlagen. [5]
24: Eine Zahl ist durch 24 teilbar, wenn sie durch 3 und durch 8 teilbar ist.
25: Eine Zahl ist durch 25 teilbar, wenn die letzten beiden Stellen durch 25 teilbar sind, also 00, 25, 50 oder 75 lauten.
26: Eine Zahl ist durch 26 teilbar, wenn sie durch 2 und durch 13 teilbar ist.
27: Eine Zahl ist durch 27 teilbar, wenn die Quer­summe der Dreier­blöcke [3] durch 27 teilbar ist.
28: Eine Zahl ist durch 28 teilbar, wenn sie durch 4 und durch 7 teilbar ist.
29: Man kann fortgesetzt das Drei­fache der letzten Ziffer den übrigen zuschla­gen. [5]
30: Eine Zahl ist durch 30 teilbar, wenn sie auf 0 endet und durch 3 teilbar ist.
37: Eine Zahl ist durch 37 teilbar, wenn die Quer­summe der Dreier­blöcke [3] durch 37 teilbar ist.

Sollte die genannte Quersumme zu groß sein, kann von ihr aber­mals eine gleich­artige Quer­summe gebildet werden. Alle genannten Quer­summen­bildungen und Abschnei­dungen endstän­diger Ziffern erhalten den Divi­sions­rest. Anders in den mit [5] bezeich­neten Fällen. Sie testen nur auf Teil­barkeit.

Selbstverständlich kann zur Prü­fung sowohl der Ausgangs­zahl als auch der Quer­summen oder Abschnei­dungen stets ein Viel­faches des Divi­sors zu- oder abge­schlagen werden. Beispiel: 789 divi­diert durch 7 läßt den Rest 5, weil 789−100⋅7=89 es tut, aber auch 789−777=12.

Ist eine Quersumme negativ, so kann das Vor­zeichen igno­riert werden, sofern man nur an Teil­bar­keit inter­essiert ist. Beispiel: 18291 hat die alter­nie­rende Quer­summe 1−9+2−8+1=−13 und ist nicht durch 11 teilbar, weil +13 es nicht ist. Doch Vorsicht: +13 läßt den Rest 2, doch 18291 den Rest 9.

Bei Quersummen von Dreier­blöcken kann eine schwer im Kopf teilbare Zahl übrig­bleiben. Dann mag man zu alter­nativen Regeln greifen, die nur für kleine Zahlen sinn­voll sind. Prak­tisch bleibt nur der Fall 7, in dem man die verdop­pelten Hunderter den verblei­benden zwei Endziffern zuschlagen kann. Beispiel: 456 führt auf 56+2⋅4=64. Beide Zahlen lassen bei Division durch 7 den Rest 1.

[1] Die Quersumme einer Zahl ist die Summe ihrer Ziffern. Bei­spiel: 123456 hat die Quer­summe 1+2+3​+4+5+6=21. Syste­mati­scher wäre 6+5+4​+3+2+1=21.

[2] Die alternierende Quersumme entsteht dadurch, daß die Ziffern hinten mit den Einern begin­nend abwech­selnd addiert und subtra­hiert werden. Beispiel: 123456 hat die alter­nie­rende Quer­summe 6−5+4−3+2−1=3.

[3] Die Quersumme der Dreier­blöcke ensteht dadurch, daß hinten begin­nend jeweis drei Ziffern als Zahl von 0 bis 999 inter­pre­tiert addiert werden. Beispiel: 12.345.678 hat Quersumme der Dreierblöcke 678+345​+12=1034, nicht 123+456+78 oder 123+456+780.

[4] Die alternierende Quer­summe der Dreier­blöcke entsteht dadurch, daß hinten begin­nend jeweils drei Ziffern als Zahl von 0 bis 999 inter­pre­tiert abwech­selnd addiert und subtra­hiert werden. Beispiel: 1.234.567.890 hat die alter­nie­rende Quer­summe der Dreier­blöcke 890−567​+234−1=556, nicht 1−234​+567−890.

[5] Solche Regeln kommen immer dann zum Zuge, wenn einem keine besseren ein­fallen. Vorsicht: Sie testen nur die Teilbar­keit und liefern nicht den Divi­sions­rest.

7

... link (5 Kommentare)   ... comment



Intervallnamen
Schon lange frage ich mich, warum musika­lische Inter­valle so komisch, so viel­fältig und leider auch wider­sprüch­lich benannt werden, ob dahinter wenig­sten grund­sätz­lich ein System steckt, so verwir­rend es auch erschei­nen mag. Musiker mögen diese Frage vor­schnell beant­worten: Der Grund­name (Terz, Quin­te usw.) kommt aus dem Abstand in der Sieben­ton­leiter oder aus der Zahl der Linien und Zwischen­räume im System der Noten­linien. Manche Inter­valle (Terz, Sep­ti­me usw.) treten gerne in ver­schie­denen Größen (Halb­ton­schrit­ten der Zwölf­ton­leiter) auf und heißen deshalb groß bzw. klein. Sollten Inter­valle aus­nahms­weise um einen wei­teren Halb­ton­schritt größer oder kleiner sein, heißen sie über­mäßig oder vermin­dert.

Mit dieser Genauig­keit kann man leben und natür­lich auch musi­zieren. Wer aber 5‑glatte Inter­valle genau benennen möchte, muß noch ein weiteres Attri­but bei­fügen, etwa für Unter­schiede von einem synto­nischen Kom­ma (81/80). So könnte die doppelt über­mäßige Unde­zime von ‘Fes nach „his als drei­fach enhar­monisch kleiner bezeich­net werden, weil es um drei syntoni­sche Kommas abwärts geht. Aber warum sollte dieses klein­zahlige Inter­vall 5625/2048 drei­fach kleiner heißen, wenn in der Folge das normale (0‑fach kleinere) 23914845/9388608 wäre. Diese Unschön­heit würde gemil­dert, wenn für jede Alte­rierung um eine Apo­tome (is, 2187/2048) ein oder zwei synto­nische Kommas weniger gezählt würden. Dann entsprä­chen Erhö­hungen einem großen Chroma (135/128) bzw. einem kleinen Chroma (25/24).

Wahrscheinlich ist es dem Umstand zu verdanken, daß die beiden natür­lichen Terzen sich um ein kleines, der diato­nische Halbton und der pytha­gorei­sche Ganzton aber um ein großes Chroma unter­scheiden, daß die beiden Chroma­tates wechsel­weise zum Zuge kommen, weshalb die nor­malen doppelt über­mäßi­gen Intervalle immer um 1125/1024 größer sind. Damit sehe ich nachstehendes Schema:

(weite)   (weite)   (weite)   (weite)           (weite)  (scharfe) (scharfe)
dreifach  vermin-   übermä-   dreifach          vermin-             doppelt
vermind    derte     ßige     übermäß            derte     große    übermäß 
      \   /     \   /     \   /                  /   \     /   \     /
    (scharfe)    \ /    (scharfe)         (scharfe) (scharfe)  (weite)
     doppelt  (scharfe)  doppelt           doppelt             übermä-
     vermind     / \     übermäß           vermind    kleine    ßige
      /   \     /   \     /   \                  \   /     \   /     \
größere   größere   größere   größere           größere   größere   größere
dreifach  vermin-   übermä-   dreifach          vermin-             doppelt
vermind    derte     ßige     übermäß            derte     große    übermäß
      \   /     \   /     \   /                  /   \     /   \     /
     doppelt   +-----+   doppelt           größere   größere   größere 
     vermin-   |OOOOO|   übermä-           doppelt             übermä-
      derte    +-----+    ßige             vermind    kleine    ßige
      /   \     /   \     /   \                  \   /   OOOOO /     \
kleinere  kleinere  kleinere  kleinere         kleinere   kleinere  kleinere
dreifach  vermin-   übermä-   dreifach          vermin-             doppelt
vermind    derte     ßige     übermäß            derte     große    übermäß
      \   /     \   /     \   /                  /   \     /   \     /
    (schwache)   \ /    (schwache)         kleinere  kleinere  kleinere
     doppelt  (schwache) doppelt           doppelt             übermä-
     vermind     / \     übermäß           vermind    kleine    ßige
      /   \     /   \     /   \                  \   /     \   /     \
(enge)    (enge)    (enge)    (enge)            (enge)  (schwache)(schwache)
dreifach  vermin-   übermä-   dreifach          vermin-             doppelt
vermind    derte     ßige     übermäß            derte     große    übermäß   
                                                 /   \     /   \     /
Intervalle zur Prime, Quarte, Quinte,     (schwache)(schwache) (enge)
Oktave, Undezime, Duodezime, ...           doppelt             übermä-
                                           vermind    kleine    ßige
  135/128 (‚cis)   81/80 (‘c)                                           
 /                   |                     Intervalle zur Terz, Sexte, Dezime, 
1 (c)                |                     Tredezime,... Für Sekunde, Septime,
 \                   |                     None, ... ist zu spiegeln und über-
  25/24   („cis)     1 (c)                 mäßig mit vermindert zu tauschen
Fett sind die nach einem deutschen Musik­lexikon gesicherten Namen. Der Rest durch systematische Fortsetzung und in Anlehnung an die Huygens-​Focker-​Intervall-​Liste. [1]

Damit stelle zumindest ich mir die Frage: Wie bestimme ich zu einem 5‑glat­ten Inter­vall die korrekte Bezeich­nung? Bei einem Inter­vall aus x Zweien, y Dreien und z Fün­fen bestimmt sich der grund­legende Name aus m=7x+11y+16z, weil die zweite Har­moni­sche 7, die dritte 11 und die fünfte 16 dia­toni­sche Schritte nach oben führt. Im Falle von m=0,1,2,3,… spricht man von einer Prime, Sekunde, Terz, Quarte, …, frei ins Deutsche über­setzt von einer (m+1)‑ten. Der Rest einer Divi­sion von m durch 7 ergibt das von Okta­ven befreite Inter­vall n=m=4y+2z (7) aus dem Bereich von 0 bis 6 für Prime bis Septime. Der nach­stehen­den Tabelle kann damit das zentrale (neutrale) Intervall (im Schema mit OOOOO gekenn­zeichnet) und die Zusam­menset­zung seines Qua­drates aus α Zweien, β Dreien und γ Fün­fen ent­nommen werden:
n  Name(n)  klein  groß Mittel Quadrat α(n) β(n) γ(n)
0  Prime         1        1       1      0    0    0
1  Sekunde  16/15  9/8  √(6/5)   6/5     1    1   -1
2  Terz      6/5   5/4  √(3/2)   3/2    -1    1    0
3  Quarte       4/3      4/3    16/9     4   -2    0
4  Quinte       3/2      3/2     9/4    -2    2    0
5  Sexte     8/5   5/3  √(8/3)   8/3     3   -1    0
6  Septime  16/9  15/8  √(10/3) 10/3     1   -1    1
Um zu ermitteln, wieviele Oktaven (a), Über­mäßig­kei­ten (b/2) und enhar­moni­sche Erhö­hun­gen (c/4) zum mitt­leren Ton, der neutralen (n+1)‑ten hinzu­kommen, ist

2x3y5z = 2α/23β/25γ/2 · 2a · ((135/128)(25/24))b/4 · (81/80)c/4

nach a, b und c aufzu­lösen. Es ergibt sich:

c=(6y−4z−3β+2γ)/7   b=(2y+8zβ−4γ)/7   a=(mn)/7

Das erste die Alterierung bezeichnende nur von b abhängende Attribut Alt(b) zum Grundnamen des Intervalls wird mit Hilfe von i=∣b∣/2 wie folgt bestimmt:
Alt(b)  = ''                   für b=0
Alt(b)  = 'große'              für b=1
Alt(b)  = 'kleine'             für b=-1
Alt(b)  = 'i-fach übermäßige'  für b>1
Alt(b)  = 'i-fach verminderte' für b<-1
Leider ist das zweite Attribut Enh(b,c) zur Angabe der enharmonischen Abweichungen etwas kompliziert. Mit j=∣c∣/4 lautet es:
Enh(b,c) = ''                für c=0
Enh(b,c) = 'größere'         für c=1,2,3
Enh(b,c) = 'kleinere'        für c=-1,-2,-3
Enh(b,c) = 'j-fach scharfe'  für c>3 und i gerade
Enh(b,c) = 'j-fach weite'    für c>3 und i ungerade
Enh(b,c) = 'j-fach schwache' für c<-3 und i gerade
Enh(b,c) = 'j-fach enge'     für c<-3 und i ungerade
zugeordnet, womit das Inter­vall „Enh(b,c) Alt(b) Name(n) plus a Oktaven“ oder im Falle von a≥0 einfacher „Enh(b,c) Alt(b) (m+1)‑te“ lautet. Ist Name(m) bekannt, so auch „Enh(b,c) Alt(b) Name(m)“ Ein Beispiel: Für 1024/675 ist x=10, y=−3, z=−2, m=n=5 (Sexte), β=−1, γ=0, c=−1, b=−3, a=0, i=1 und j=0. Damit handelt es sich um eine „klei­nere 1‑fach vermin­derte Sexte plus 0 Oktaven“, kurz die klei­nere vermin­derte Sexte. So steht es auch in einem deut­schen Musik­lexi­kon. [2] Doch die sich alle mögli­chen Inter­valle anhei­schig machende Huygens-​Fokker-​Liste [3] nennt eine enge vermin­derte Sexte.

Auch im deutschen Sprach­gebrauch verdrängt die Bezeich­nung pythago­reisch für 3‑glatte Inter­valle gerne die syste­matische. So heißt die kleinere kleine Terz (32/27) pythago­reisch und in der Folge die grö­ßere (6/5) einfach (natür­liche) kleine Terz. Das ist nicht bedenklich, solange man in exoti­schen Bereichen nicht zu unsyste­mati­schen Bezeich­nungen greift. Und damit meine ich nicht sehr kleine Inter­valle und einige beson­dere wie Halbton, Ganzton, Chroma, Limma, Komma, Apotome, Diesis, Schisma, Ditonus, Tritonus.

[1] Ich habe scharf, schwach, eng und weit in Klammern gesetzt, denn es ist nicht mehr als mein Versuch, die in der Huygens-​Fokker-​Liste [3] so bezeich­neten Inter­valle in das deutsche System des Musik­lexikons [2] einzu­ordnen. Wie es richtig ist oder sein könnte, weiß ich nicht. Ich bin jedem dankbar, dem anerkannte Konzepte bekannt sind und sie mir in einem Kommen­tar darlegt.

[2] Habe nur noch die Kopie der Seiten 409 bis 413 zum Stich­wort Inter­vall. Darin sind leider nur die gängig­sten Inter­valle ver­zeichnet, daß ein Gesamt­system über sie hinaus nicht zu erkennen ist.

[3] Intervall-Liste. Huygens-​Fokker Foun­dation. Diese Liste nennt zwar mehr 5‑glatte Inter­valle als das Musiklexikon [2], doch leider ist ein System nur in Ansätzen zu erkennen und nicht konse­quent umge­setzt.

Quinte | Dur

... link (3 Kommentare)   ... comment