... newer stories
Quadratzahlen
wuerg, 24.04.2005 18:38
Abgesehen von den Primzahlen erscheinen mir die Quadratzahlen [1] als die wichtigsten. Denn wenn man eine andere Zahlenreihe hat, deren Vertreter ich einmal Anderzahlen nennen möchte, dann fragt man sich allenfalls, welche von diesen Anderzahlen auch Quadratzahlen sind, und nicht umgekehrt, welche Quadratzahl eine Anderzahl ist. Der Unterschied liegt also nicht im Ergebnis, sondern in der Denkweise. Doch damit genug der Vorrede und Entschuldigung, daß eine schlichte Zahlenfolge wie die der Quadratzahlen überhaupt erwähnt wird. Sie ist sogar so simpel und allgemein bekannt, daß ich von ihr sprechen kann, bevor ich sie überhaupt definiert habe. Formal ist die n‑te Quadratzahl einfach Q(n)=n·n. Anschaulich ist das die Zahl der Punkte in quadratischer Anordnung mit n Punkten in jeder Zeile und jeder Spalte oder die Fläche eines Quadrates mit Kantenlänge n.
Die Differenz zweier aufeinanderfolgender Quadratzahlen ist Q(n)−Q(n−1)=2n−1. Daraus folgt direkt, daß die Summe der ersten n ungeraden Zahlen Q(n), also die n‑te Quadratzahl ist. Veranschaulicht sieht zum Beispiel 1+3+5+7=16 wie folgt aus:
Das rechte Teilbild veranschaulicht, wie man die vier Rechtecke A bis D in jeweils zwei gleiche Dreiecke 1 bis 8 teilen kann. Darin ist zu ‚sehen‘, was man leicht nachrechnen kann: Q(2n+1)=8·D(n)+1, worin D(n)=m die n‑te Dreieckszahl ist.
[1] The On-Line Encyclopedia of Integer Sequences. A000290.
[2] Bilder, Animationen, Modelle, Maschinen und andere Hilfsmittel können aber den richtigen Weg weisen und einen Sachverhalt interessant machen.
Dreieckszahlen
Die Differenz zweier aufeinanderfolgender Quadratzahlen ist Q(n)−Q(n−1)=2n−1. Daraus folgt direkt, daß die Summe der ersten n ungeraden Zahlen Q(n), also die n‑te Quadratzahl ist. Veranschaulicht sieht zum Beispiel 1+3+5+7=16 wie folgt aus:
1 3 5 7 3 3 5 7 5 5 5 7 7 7 7 7Zu den Primzahlen scheint auf den ersten Blick keine Beziehung zu bestehen, es gibt natürlich auch keine prime Quadratzahl, weil von n=1 abgesehen jede Quadratzahl Q(n) mindestens 3 Teiler hat, nämlich 1, n und sich selbst. Trotzdem sind die Beziehungen unerschöpflich und machen einen bedeutenden Teil der Zahlentheorie aus. Dividiert man die Quadratzahlen durch eine ungerade Primzahl p>2, so treten genau (p+1)/2 der p möglichen Reste auf. Im Fall p=7 sieht das wie folgt aus:
Q(n) 1 4 9 16 25 36 49 64 81 100 121 ... Rest 1 4 2 2 4 1 0 1 4 2 2 ...Die Abfolge 1, 4, 2, 2, 4, 1, 0 wiederholt sich wieder und wieder. Nicht so einfach ist es mit zusammengesetzten Zahlen. Der Mensch interessiert sich besonders für die Reste bei der Division durch q=10, also für die Einerstelle der Quadratzahlen. Vier von zehn treten nicht auf. Es gibt deshalb keine auf 2, 3, 7 oder 8 endenden Quadratzahlen. Besonders schön ist es für q=8:
Q(n) 1 4 9 16 25 36 49 64 81 100 121 ... Rest 1 4 1 0 1 4 1 0 1 4 1 ...Die Quadrate der ungeraden Zahlen lassen bei Division durch 8 alle den Rest 1. Und weil selbstverständlich eine Quadratzahl genau dann ungerade ist, wenn sie Quadrat einer ungeraden Zahl ist, heißt dies schöner ausgedrückt: Ungerade Quadratzahlen sind von der Form 8m+1. Eine Veranschaulichung für 49=8·6+1:
3 3 3 2 2 1 1 3 3 3 2 2 1 1 4 4 4 2 2 1 1 4 4 4 8 8 8 5 5 6 6 8 8 8 5 5 6 6 7 7 7 5 5 6 6 7 7 7Das Loch in der Mitte steht für den Rest 1. Die Zahlen 1 bis 8 kommen jeweils m=6 mal vor. Doch Vorsicht mit anschaulichen Beweisen. [2] Dieser hier geht nur für n=3,7,11,15…, für die übrigen ungeraden Zahlen muß man ihn etwas abwandeln oder allgemeiner gestalten:
4 4 3 3 2 2 2 2 2 B B B B A A A A A 3 3 3 3 2 2 2 2 1 4 4 3 3 2 2 2 2 2 B B B B A A A A A 4 3 3 3 2 2 2 1 1 4 4 3 3 1 1 1 1 1 B B B B A A A A A 4 4 3 3 2 2 1 1 1 4 4 3 3 1 1 1 1 1 B B B B A A A A A 4 4 4 3 2 1 1 1 1 4 4 3 3 7 7 8 8 B B B B D D D D 4 4 4 4 8 8 8 8 5 5 5 5 5 7 7 8 8 C C C C C D D D D 5 5 5 5 6 7 8 8 8 5 5 5 5 5 7 7 8 8 C C C C C D D D D 5 5 5 6 6 7 7 8 8 6 6 6 6 6 7 7 8 8 C C C C C D D D D 5 5 6 6 6 7 7 7 8 6 6 6 6 6 7 7 8 8 C C C C C D D D D 5 6 6 6 6 7 7 7 7Für n=5,9,13,17,… kann man die um den Mittelpunkt angeordneten vier Rechtecke (12, 34, 56 und 78) längs statt quer teilen. Das ist im linken Quadrat für n=9 dargestellt. Zusammenfassen kann man beide Fälle wie im mittleren Quadrat. Hier sind nur die vier Rechtecke A bis D gekennzeichnet. Dieses Bild gilt zwar für alle ungeraden n, doch ‚beweist‘ es nur, daß jede ungerade Quadratzahl von der Form 4k+1 ist. Erst das Zusatzwissen darüber, daß die Kanten aller vier gleichgroßen Rechtecke sich stets um 1 unterscheiden und sie deshalb einen geraden Flächeninhalt k=2m haben, führt zum Ergebnis 8m+1.
Das rechte Teilbild veranschaulicht, wie man die vier Rechtecke A bis D in jeweils zwei gleiche Dreiecke 1 bis 8 teilen kann. Darin ist zu ‚sehen‘, was man leicht nachrechnen kann: Q(2n+1)=8·D(n)+1, worin D(n)=m die n‑te Dreieckszahl ist.
[1] The On-Line Encyclopedia of Integer Sequences. A000290.
[2] Bilder, Animationen, Modelle, Maschinen und andere Hilfsmittel können aber den richtigen Weg weisen und einen Sachverhalt interessant machen.
Dreieckszahlen
... link (5 Kommentare) ... comment
... older stories